proof Boolen algebra rules
Answers
Answered by
2
Answer:
Boolean Algebraic Theorems
De Morgan's Theorem : ...
Transposition Theorem : ...
Proof: RHS = (A + C) (A' + B) = AA' + A'C + AB + CB = 0 + A'C + AB + BC = A'C + AB + BC(A + A') = AB + ABC + A'C + A'BC = AB + A'C = LHS.
Example: AB + BC' + AC = AC + BC'
Step-by-step explanation:
Answered by
1
"6a. X • Y = Y • X Commutative Law
7a. X (Y Z) = (X Y) Z = (X Z) Y = X Y Z Associative Law
7b. X + (Y + Z) = (X + Y) + Z = (X + Z) + Y = X + Y + Z Associative Law
8a. X • (Y + Z) = X Y + X Z Distributive Law
9a. X • Y = X + Y de Morgan's Theorem"
Similar questions