Math, asked by deepaksassan01, 10 months ago

proof of pythagoras theorem..... plz explain it easily ​

Answers

Answered by christyshaji9000
0

Answer:

Step-by-step explanation:triangle ABC is a right angled triangle

CA is the hypotenuse

CA^{2}= AB ^{2}+BC^{2}

=\sqrt{CA}\sqrt{CA}

=CA

hope you would understand

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
29

\huge\sf\gray{To\;Prove}

✭ The Pythagoras Theorem(AC² = AB² + BC²)

\rule{110}1

\huge\sf\purple{Steps}

The Pythagoras Theorem

≫ In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

\underline{\underline{\red{\sf Construction}}}

\sf Draw \ BD \ \perp \ AC

Proving

\sf In \ \triangle ADB \ and \ \triangle ABC

\sf\angle A = \angle A \: \bigg\lgroup Common\bigg\rgroup

\sf\angle ADB = \angle ABC \bigg\lgroup \small Each \ equal \ to \ 90^{\circ}\bigg\rgroup

\sf\therefore \triangle ADB \sim \triangle ABC \bigg\lgroup AA \bigg\rgroup

\sf\dfrac{AD}{AB}=\dfrac{AB}{AC}

\sf AB^2 = AD \times AC\qquad-eq(1)

\sf In \ \triangle BDC \ and \ \triangle ABC

\sf\angle C = \angle C \bigg\lgroup Common \bigg\rgroup

\sf\angle BDC = \angle ABC \bigg\lgroup \small Each \ equal \ to \ 90^{\circ}\bigg\rgroup

\sf\therefore \triangle BDC \sim \triangle ABC \bigg\lgroup AA \bigg\rgroup

»» \sf\dfrac{DC}{BC} = \dfrac{BC}{AC}

»» \sf BC^2 = DC × AC\qquad -eq(2)

Adding in eq(1) and eq(2)

\sf AB^2 + BC^2 = AD × AC + DC × AC

\sf AB^2  + BC^2 = AC( AD + DC )

\sf AB^2 + BC^2 = AC × AC

\sf\orange{AC^2 = AB^2 + BC^2}

\sf Hence \ Prove !!

\rule{170}3

Attachments:
Similar questions