Math, asked by raul243, 1 year ago

Proof ,

 log_{a}(b)  = x

Answers

Answered by Anonymous
3

 <h2><font color = red > hey there



 <font color = black > here we go....


 log_{a}(b)  = x



a {}^{x}  = b



a {}^{ \frac{x}{x} }  = b {}^{ \frac{1}{x} }



a = b {}^{ \frac{1}{x} }



 log_{a}(b)  =  \frac{1}{x}



x =  \frac{1}{ log_{b}(a) }



Hope it helps you

Thanks for asking........



 <b > prabhudutt
Answered by MonarkSingh
42
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!}}}

<h2><b><i><font face=Copper black size=4 color=blue>

Here is your answer

 log_{a}(b)  = x \\  \\   {a}^{x}  = b \\  \\  {a}^{x \times  \frac{1}{x} }  =  {b}^{ \frac{1}{x} }  \\  \\  {a}^{ \frac{x}{x} }  =  {b}^{ \frac{1}{x} }  \\  \\ a =  {b}^{ \frac{1}{x} }  \\  \\  log_{a}(b)  =  \frac{1}{x}  \\  \\ x =  \frac{1}{ log_{b}(a) }

Hence,

 log_{a}(b)  = x =  \frac{1}{ log_{b}(a) }  \\
Hence, Proved

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\: helps\: you}}}}}}}}}}}}}}}
Similar questions