Math, asked by Royalrohit, 1 year ago

proof
 \sqrt{3}  +  \sqrt{5}
is irrational​

Answers

Answered by Anonymous
25

\underline{ Let\:us\:assume\: that\: \sqrt{3} \:  +  \:  \sqrt{5} \: is \: rational }

\underline{number.}

 \sqrt{3} +  \sqrt{5} = \dfrac{a}{b}

Here, a and b are co-prime numbers.

Now!

Squaring on both sides.

 {( \sqrt{3} \:  +   \:  \sqrt{5})  }^{2} = {( \dfrac{a}{b}) }^{2}

As we know that

(a + b)² = a² + 2ab + b²

3 + 2 \sqrt{15} + 5 = {( \dfrac{a}{b}) }^{2}

8 + 2 \sqrt{15} = {( \dfrac{a}{b}) }^{2}

2 \sqrt{15} =  \dfrac{ {a}^{2} \:  -  \: 8 {b}^{2}  }{ {b}^{2} }

\sqrt{15} = (\dfrac{1}{2})  (\dfrac{ {a}^{2} \:  -  \: 8 {b}^{2}  }{ {b}^{2} } )

(\dfrac{1}{2})  (\dfrac{ {a}^{2} \:  -  \: 8 {b}^{2}  }{ {b}^{2} } ) is a rational number.

\underline{So, \:\sqrt{15} \: is\: also\: a \:rational \:number.}

\underline{But \:as\: we \:know\: that \:\sqrt{15} \: is \:irrational\: number.}

\underline{So,\: our\: whole\: assumption \:is \:wrong.}

\bold{ \sqrt{3} \:  +  \:  \sqrt{5} \: is \: irrational \: number }

\boxed{Hence,\:proofed}


Anonymous: Yeh baat xD! amazing answer manu jii :)
Anonymous: thanks ☺
Anonymous: Happy B'day♥
Anonymous: thank you ☺
Similar questions