PROOF THAT sin3A /sinA-cos3A/cosA=2
Answers
Answered by
61
Heya dear
===================================
LHS
sin3A / sinA - cos3A / cosA
= ( sin3A ) ( cosA ) - ( cos3A ) ( sinA ) / sinAcosA
= ( 3sinA - 4sin³A ) cosA - ( 4cos³A - 3cosA ) ( sinA ) / sinAcosA
= 3sinAcosA - 4sin³cosA - 4cos³AsinA + 3sinAcosA / sinAcosA
= 6sinAcosA - 4sin³cosA - 4cos³sinA / sinAcosA
= sinAcosA ( 6 - 4sin²A - 4cos²A ) / sinAcosA
= 6 - 4sin²A - 4cos²A
= 6 - 4 ( sin²A + cos²A ) [ °.° sin²a + cos²b = 1
= 6 - 4 × 1
= 6 - 4
= 2
RHS
thanks
=====================================
===================================
LHS
sin3A / sinA - cos3A / cosA
= ( sin3A ) ( cosA ) - ( cos3A ) ( sinA ) / sinAcosA
= ( 3sinA - 4sin³A ) cosA - ( 4cos³A - 3cosA ) ( sinA ) / sinAcosA
= 3sinAcosA - 4sin³cosA - 4cos³AsinA + 3sinAcosA / sinAcosA
= 6sinAcosA - 4sin³cosA - 4cos³sinA / sinAcosA
= sinAcosA ( 6 - 4sin²A - 4cos²A ) / sinAcosA
= 6 - 4sin²A - 4cos²A
= 6 - 4 ( sin²A + cos²A ) [ °.° sin²a + cos²b = 1
= 6 - 4 × 1
= 6 - 4
= 2
RHS
thanks
=====================================
SURYA2468:
out standing bro
Answered by
21
Hey there!
Refer the picture for your answer.
Answer in attachment .
Refer the picture for your answer.
Answer in attachment .
Attachments:
Similar questions