Math, asked by niharikakshyap, 10 months ago

Proof that,
1.{(a + b)}^{2}  =   {a}^{2}  + 2ab +  {b}^{2}
2. {(a - b)}^{2}  = ( {a}^{2}  - 2ab +  {b}^{2} )
3.(a + b)(a - b) = ( {a}^{2}  -  {b}^{2} )

Answers

Answered by Anonymous
8

solution -

\bf {1. {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2}}

\bf {Proof  =  > we \: have,}

\bf {{(a + b)}^{2} = (a + b)(a + b)}

\bf { = a(a + b) + b(a + b)}

\bf { =  {a}^{2}  + ab + ba +  {b}^{2}}

\bf { =  {a}^{2}  + 2ab +  {b}^{2} [since \: ba = ab]}

\bf {∴ \:  {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}}

___________________________________________

\bf {2. {(a - b)}^{2} = ( {a}^{2} - 2ab + {b}^{2} )}

\bf {Proof  =  >  we \: have,}

\bf { {(a - b)}^{2}  = (a - b)(a - b)}

\bf { = a(a - b) - b(a - b)}

\bf { =  {a}^{2}  - ab - ba +  {b}^{2}}

\bf { =  {a}^{2}  - ab - ab +  {b}^{2} [since \: ba = ab]}

\bf { =  {a}^{2}  - 2ab +  {b}^{2}}

\bf {∴  {(a - b)}^{2}  = ( {a}^{2}  - 2ab +  {b)}^{2}}

___________________________________________

\bf {3.(a + b)(a - b) = ( {a}^{2} - {b}^{2} )}

\bf {Proof =  > we \: have,}

\bf {( a+ b)(a - b) = a(a - b) + b(a - b)}

\bf { =  {a}^{2}  - ab + ba -  {b}^{2}}

\bf { =  {a}^{2}  - ab + ab -  {b}^{2} [since \: ba = ab)]}

\bf { =  {a}^{2}  -  {b}^{2}}

\bf { ∴(a + b)(a - b) = ( {a}^{2} - {b}^{2} )}

____ ____ ____ ____ ___ ____ ____ ____....

Similar questions