Math, asked by nirajghatkar03, 1 year ago

Proof the following ​

Attachments:

Answers

Answered by ihrishi
0

Step-by-step explanation:

 \sqrt{ \frac{sec \: x + 1}{sec \: x - 1} }  =  \frac{1}{cosec \: x - cot \: x}  \\ LHS =  \sqrt{ \frac{sec \: x + 1}{sec \: x - 1} }   \\ multiplying \: numerator \: and \:  \\ denominator \: by \:  \sqrt{sec \: x - 1}  \: we \: find :  \\ =  \sqrt{ \frac{sec \: x + 1}{sec \: x - 1} }   \times   \sqrt{ \frac{sec \: x  -  1}{sec \: x - 1} }  \\ =  \sqrt{ \frac{sec^{2}  \: x  -  {1}^{2} }{(sec \: x - 1)^{2} } }    \\ =  \sqrt{ \frac{sec^{2}  \: x  -  {1} }{(sec \: x - 1)^{2} } }     \\  =  \sqrt{ \frac{tan^{2}  \: x }{(sec \: x - 1)^{2} } }   \\   =  \frac{tan  \: x }{sec \: x - 1}  \\  =  \frac{ \frac{sin \: x}{cos \: x} }{ \frac{1}{cos \: x} - 1 }  \\ =  \frac{ \frac{sin \: x}{cos \: x} }{ \frac{1 - cos \: x}{cos \: x} }  \\ =  \frac{ \frac{sin \: x}{cos \: x}  \times cos \: x}{ 1 - cos \: x } \\ =  \frac{  sin\: x \:  }{ 1 - cos \: x } \\ =  \frac{  \frac{sin\: x}{sin\: x}}{  \frac{1 - cos \: x}{sin\: x}  }.. (Dividing \:Nr. \:\& \:Dr. \:by \:sin\: x) \\  =  \frac{1}{ \frac{1}{sin\: x}  -  \frac{cos\: x}{sin\: x} }  \\  =  \frac{1}{cosec \: x - cot \: x}  \\  = RHS \\

Thus Proved

Similar questions