Math, asked by PrinceVegeta, 1 year ago

proov cosx-sinx+1/cosx+sinx-1=cosecx+cotx

Answers

Answered by rohitkumargupta
27
HELLO DEAR,


 \frac{ \cos(x) -  \sin(x)  + 1 }{ \cos(x)  +  \sin(x) - 1 }  \\  =    \frac{ \cos(x) + 1 -  \sin(x)  }{ \cos(x) -( 1 -  \ \sin(x))   }  \times  \frac{ \cos(x) + 1 -  \sin(x)  }{ \cos(x)  + ( 1   -  \ \sin(x))} \\  >   \frac{( \cos(x) + (1 -  \sin(x)  )^{2} }{ \cos^{2} (x) - (1 -  \sin(x) ) ^{2}  }  \\  =  >  \frac{ { \cos}^{2}x + 1  +   \sin(x) ^{2}  - 2 \sin(x)   + 2 \cos(x) (1 -  \sin(x) )}{ { \cos}^{2} x - 1 -  { \sin }^{2} x+ 2 \sin(x)  }    \\  =  >  \frac{2 - 2 \sin(x)  + 2 \cos(x)( 1 -  \sin(x) )}{ - 2 \sin ^{2} (x) + 2 \sin(x)  }  \\  =  > \frac{2(1 -  \sin(x) )(1 +  \cos(x) )}{2 \sin(x)(1 -  \sin(x) ) }  \\  =  >  \frac{1 +  \cos(x) }{ \sin(x) }  \\  =  >  \cosec(x)  +  \cot(x)
I HOPE ITS HELP YOU DEAR,
THANKS

PrinceVegeta: u r great
PrinceVegeta: hnx a lot
rohitkumargupta: thanks
rohitkumargupta: welcome
Similar questions