Math, asked by pushpajha7654, 3 months ago

proove karo point lelo yar proove kardo plz ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

Prove that

\rm :\longmapsto\:\dfrac{ {a}^{ - 1} }{ {a}^{ - 1} +  {b}^{ - 1}  }  + \dfrac{ {a}^{ - 1} }{ {a}^{ - 1}  -  {b}^{ - 1} }  = \dfrac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }

Solution :-

Consider LHS,

\rm :\longmapsto\:\dfrac{ {a}^{ - 1} }{ {a}^{ - 1} +  {b}^{ - 1}  }  + \dfrac{ {a}^{ - 1} }{ {a}^{ - 1}  -  {b}^{ - 1} }

\rm \:  =  \:  \:  {a}^{ - 1} \bigg( \dfrac{1}{ {a}^{ - 1} +  {b}^{ - 1}  }  + \dfrac{1}{ {a}^{ - 1}  -  {b}^{ - 1} } \bigg)

\rm \:  =  \:  \:  \dfrac{1}{a}   \bigg( \dfrac{1}{ \dfrac{1}{a}+ \dfrac{1}{b} } + \dfrac{1}{ \dfrac{1}{a} -  \dfrac{1}{b} } \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\:  {x}^{ - 1}  =  \dfrac{1}{x} }}

 \rm \:  =  \:  \:  \dfrac{1}{a}\bigg(\dfrac{1}{\dfrac{b + a}{ab} }  + \dfrac{1}{\dfrac{b - a}{ab} } \bigg)

 \rm \:  =  \:  \:  \dfrac{1}{a}\bigg(\dfrac{ab}{b + a}  + \dfrac{ab}{b - a} \bigg)

 \rm \:  =  \:  \:  \dfrac{ \cancel a \: b}{ \cancel a}\bigg(\dfrac{1}{b + a}  + \dfrac{1}{b - a} \bigg)

 \rm \:  =  \:  \:  b\bigg(\dfrac{b - a + b + a}{(b + a)(b - a)}   \bigg)

 \rm \:  =  \:  \:  b\bigg(\dfrac{2b}{(b + a)(b - a)}   \bigg)

 \rm \:  =  \:  \: \dfrac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }

Hence, Proved

Additional Information : -

\boxed{ \sf{ \:  {x}^{m} \times  {x}^{n}  =  {x}^{m + n}}}

\boxed{ \sf{ \:  {x}^{m}  \div  {x}^{n}  =  {x}^{m  -  n}}}

\boxed{ \sf{ \:  {( {x}^{m} )}^{n} =  {x}^{mn}  }}

\boxed{ \sf{ \: {x}^{0}   = 1}}

\boxed{ \sf{ \: {x}^{ - y}   =  \dfrac{1}{ {x}^{y} } }}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Answered by lokeshnandigam69
4

Answer:

\large\underline{\bold{Given \:Question - }}

GivenQuestion−

Prove that

\rm :\longmapsto\:\dfrac{ {a}^{ - 1} }{ {a}^{ - 1} + {b}^{ - 1} } + \dfrac{ {a}^{ - 1} }{ {a}^{ - 1} - {b}^{ - 1} } = \dfrac{2 {b}^{2} }{ {b}^{2} - {a}^{2} } :⟼

a

−1

+b

−1

a

−1

+

a

−1

−b

−1

a

−1

=

b

2

−a

2

2b

2

Solution :-

Consider LHS,

\rm :\longmapsto\:\dfrac{ {a}^{ - 1} }{ {a}^{ - 1} + {b}^{ - 1} } + \dfrac{ {a}^{ - 1} }{ {a}^{ - 1} - {b}^{ - 1} } :⟼

a

−1

+b

−1

a

−1

+

a

−1

−b

−1

a

−1

\rm \: = \: \: {a}^{ - 1} \bigg( \dfrac{1}{ {a}^{ - 1} + {b}^{ - 1} } + \dfrac{1}{ {a}^{ - 1} - {b}^{ - 1} } \bigg) =a

−1

(

a

−1

+b

−1

1

+

a

−1

−b

−1

1

)

\rm \: = \: \: \dfrac{1}{a} \bigg( \dfrac{1}{ \dfrac{1}{a}+ \dfrac{1}{b} } + \dfrac{1}{ \dfrac{1}{a} - \dfrac{1}{b} } \bigg) =

a

1

(

a

1

+

b

1

1

+

a

1

b

1

1

)

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf{ \because\: {x}^{ - 1} = \dfrac{1}{x} }}

∵x

−1

=

x

1

\rm \: = \: \: \dfrac{1}{a}\bigg(\dfrac{1}{\dfrac{b + a}{ab} } + \dfrac{1}{\dfrac{b - a}{ab} } \bigg) =

a

1

(

ab

b+a

1

+

ab

b−a

1

)

\rm \: = \: \: \dfrac{1}{a}\bigg(\dfrac{ab}{b + a} + \dfrac{ab}{b - a} \bigg) =

a

1

(

b+a

ab

+

b−a

ab

)

\rm \: = \: \: \dfrac{ \cancel a \: b}{ \cancel a}\bigg(\dfrac{1}{b + a} + \dfrac{1}{b - a} \bigg) =

a

a

b

(

b+a

1

+

b−a

1

)

\rm \: = \: \: b\bigg(\dfrac{b - a + b + a}{(b + a)(b - a)} \bigg) =b(

(b+a)(b−a)

b−a+b+a

)

\rm \: = \: \: b\bigg(\dfrac{2b}{(b + a)(b - a)} \bigg) =b(

(b+a)(b−a)

2b

)

\rm \: = \: \: \dfrac{2 {b}^{2} }{ {b}^{2} - {a}^{2} } =

b

2

−a

2

2b

2

Hence, Proved

Additional Information : -

\boxed{ \sf{ \: {x}^{m} \times {x}^{n} = {x}^{m + n}}}

x

m

×x

n

=x

m+n

\boxed{ \sf{ \: {x}^{m} \div {x}^{n} = {x}^{m - n}}}

x

m

÷x

n

=x

m−n

\boxed{ \sf{ \: {( {x}^{m} )}^{n} = {x}^{mn} }}

(x

m

)

n

=x

mn

\boxed{ \sf{ \: {x}^{0} = 1}}

x

0

=1

\boxed{ \sf{ \: {x}^{ - y} = \dfrac{1}{ {x}^{y} } }}

x

−y

=

x

y

1

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions