proove that 1 + tan²A = sec²A
Answers
Answered by
7
Heya!
Here is ur answer..
To Prove
1+tan²A = sec²A
LHS :
= 1+tan²A
= 1+(sinA/cosA)²
= 1+sin²A/cos²A
= cos²A+sin²A/cos²A
= 1/cos²A
= (1/cosA)²
= sec²A
RHS = sec²A
Therefore, LHS = RHS
Hence proved!
Answered by
1
Answer:
LHS =
1 + tan²A
1 + (SinA/ CosA)²
1 + Sin²A / Cos²A
Cos²A + Sin²A/ Cos²A
1 / Cos²A
( 1CosA²)
Sec²A
RHS = Sec²A
LHS= RHS
Similar questions