Math, asked by vijaylaxmi95, 8 months ago

proove that........​

Attachments:

Answers

Answered by 007Boy
1

Question :-

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5}  +  \sqrt{3} }  +  \frac{1}{2 -  \sqrt{5} }  = 0

Solution :-

Take L. H. S.

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }

Now rationalize every term

( \frac{1}{2 +  \sqrt{3} })  \times ( \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }) + ( \frac{2}{ \sqrt{5}  +  \sqrt{3} }  )( \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }) - ( \frac{1}{ \sqrt{5}  - 2} )

Now simplify this

 (\frac{2 -  \sqrt{3} }{4 - 3})  + ( \frac{2 \sqrt{5}   - 2 \sqrt{3} }{5 - 3} )  -  (  \frac{ \sqrt{5}  + 2} {5 - 4} ) \\  \\  \\ (2 -  \sqrt{3} ) + ( \sqrt{5}  -  \sqrt{3} ) - ( \sqrt{5}  + 2) \\  \\  \\ 2 -  \sqrt{3}  +  \sqrt{5}  -  \sqrt{3}  -  \sqrt{5}  - 2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: rhs \\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: proved

Answered by InfiniteSoul
0

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

\sf \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{2}{ \sqrt{5}  +  \sqrt{3} }  +  \frac{1}{2 -  \sqrt{5} }  = 0

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\sf \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{2}{ \sqrt{5} +  \sqrt{3}  }  +  \dfrac{1}{2 -  \sqrt{5} } = 1

  • rationalize the denominator

 \sf (\dfrac{1}{ 2 +  \sqrt 3})  \times ( \dfrac {2 -  \sqrt 3}{2 -  \sqrt 3 } )

+ ( \dfrac{2}{ \sqrt 5  +  \sqrt 3 }  )\times( \dfrac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  })

- ( \dfrac{1}{ \sqrt{5}  - 2} )\times(\dfrac{\sqrt 5 + 2}{\sqrt 5 + 2}) = 0

___________________

\sf (\dfrac{2 -  \sqrt{3} }{4 - 3})  + ( \dfrac{2 \sqrt{5}   - 2 \sqrt{3} }{5 - 3} )  -  (  \dfrac{ \sqrt{5}  + 2} {5 - 4} ) = 0

\sf (2 - \sqrt{3} ) + ( \sqrt{5}  -  \sqrt{3} ) - ( \sqrt{5}  + 2)

\sf \cancel 2 - \sqrt{3}  +  \sqrt{5}  - \sqrt{3}  -  \sqrt{5}  - \cancel 2 = 0

 0 = 0

LHS = RHS

......Hence Proved

_________________❤

THANK YOU ❤

Similar questions