Prove (0,0) (5,5) (-5,5) are the values of a right isosceles triangle.
Answers
Answered by
3
Step-by-step explanation:
Let,
A(0,0)
B(5,5)
C(-5,5)
Now,
AB²=(5-0)²+(5-0)²
AB²=25+25
AB²=50
AC²=(-5-0)²+(5-0)²
=25+25
AC²=50
BC²=(-5-5)²+(5-5)²
=100+0
=100
Now,
AB²=AC²
AB=AC
Thus ΔABC is a isosceles triangle.
Also,
AB²+AC²=BC²
Thus by the converse of Pythagoras Theorem,
ΔABC is a right triangle right-angled at B
∴ΔABC is a right isosceles triangle
Similar questions