Math, asked by Ayush2804, 1 year ago

Prove 1+cot^2/1+tan^2=(1+tan/1+cot)^2

Attachments:

Answers

Answered by sandy1816
2

Step-by-step explanation:

From LHS

1+cot²A/1+tan²A

=(1+cos²A/sin²A)/(1+sin²A/cos²A)

=(sin²A+cos²A/sin²A)÷(cos²A+sin²A/cos²A)

=1/sin²A÷1/cos²A

=1/sin²A×cos²A/1

=cot²A

Now,from RHS

(1+cotA/1+tanA)²

=(1+CosA/SinA÷1+SinA/CosA)²

=(SinA+cosA/sinA÷cosA+sinA/cosA)²

=(sinA+cosA)²/sin²A÷(cosA+sinA)²/cos²A

=(sinA+cosA)²/sin²A×cos²A/(sin²A+cos²A)

=cos²A/sin²A

=cot²A

therefore LHS=RHS

Similar questions