prove 1+secA - tanA/ 1+secA+tanA = 1-sinA/cosA
Answers
Hey
the answer is in the attachment
hope it helps
pls mark it the brainliest if u find it useful
L.H.S = 1 + secA – tanA /1+ secA + tanA sinA / cosA
= L.H.S(sec2A - tan2A) + secA - tanA/ 1+ secA + tanA
As we know that [sec2A - tan2A = 1]
So here L. H. S= (SECA - tanA) (secA + tanA) + (secA - tanA) / 1 + secA + tanA
We know about this formula [a2+b23(a+b) (a-b)]
L.H.S = (secA - tanA) (1+secA + tanA) / 1+ secA + tanA
L.H.S = secA – tanA
R.H.S=1
We know about the formula of secA and tanA, [secA = 1/ COSA] [tanA = sinA / cosA]
putting the value of secA and tanA= L.H.S(sec2A - tan2A) + secA – tanA / 1 + secA + tanA
As we know that [sec2A - tan2A = 1]
So here L. H. S= (seCA - tanA) (secA + tanA) + (secA - tanA) /1 + secA + tanA
We know about this formula (a2+b2=(a+b) (a-b)]
L.H.S = (secA -tanA) (1+secA + tanA) / 1+ secA + tanA
L.H.S = secA - tanA
We know about the formula of secA and tanA, [secA = 1/ cosA],
[ tanA = sinA / cosA]
putting the value of secA and tanA
so = 1/ cosA - sinA / cosA
L.H. S= 1 - sinA / cosA
So here LHS is equal to R.H.S