Math, asked by naruto3765, 9 months ago

Prove (1+sina+cosa)²=2(1+sina)(1+cosa)

Answers

Answered by Anonymous
0

Step-by-step explanation:

{(1+Sina) + Cosa}²

(1+Sina)² + Cos²a + 2(1+Sina)(Cosa)

1 + Sin²a + 2Sina + Cos²a + 2Cosa(1+Sina)

2 + 2Sina + 2Cosa(1+Sina)

2(1+Sina) + 2(1+Sina)Cosa

2(1+Sina)(1+Cosa)

Answered by apm43
0

Answer:

 lhs= ( {1 +  \sin( \alpha ) +  \cos( \alpha )  })^{2}  \\ 1 +  { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  + 2 \sin( \alpha )  + 2 \sin( \alpha )  \cos( \alpha )  + 2 \cos( \alpha )  \\ 1 + 1 + 2 \sin( \alpha )  + 2 \sin( \alpha )  \cos( \alpha )  + 2 \cos( \alpha )  \\  2 + 2 \sin( \alpha )  + 2 \sin( \alpha )  \cos( \alpha )  + 2 \cos( \alpha )  \\ 2(1 +  \sin( \alpha )  +  \sin( \alpha )  \cos( \alpha )  +  \cos( \alpha )  \\ 2(1 +  \sin( \alpha ) )(1 +  \cos( \alpha ) )

may be my answer will be help you...please. mark my answer as best answer...

Similar questions