Math, asked by ADITYA52004, 11 months ago

prove: 1+sinO/cosO + cosO/1+sinO = 2secO​

Answers

Answered by rahulsali827pedv57
3

Answer:

hope you will understand it.

Attachments:
Answered by jainishpjain
2

1 +  \sin( \alpha )  \div  \cos( \alpha )  +  \cos( \alpha )  \div 1 +  \sin( \alpha )  \\  \\  =  {(1 +  \sin( \alpha ) )}^{2}  +  { \cos( \alpha ) }^{2}  \div  \sin( \alpha ) (1 +  \cos( \alpha ) ) \\  \\  = 1 +  { \sin( \alpha ) }^{2}  +  2 \sin( \alpha ) +  { \cos( \alpha  ) }^{2}   \div (1  +  \sin( \alpha ) )\cos(  \alpha ) \\  \\  = 2(1 +  \sin( \alpha )  \cos( \alpha ) ) \div (1 +  \sin( \alpha ))  \cos( \alpha)  \\  \\  = 2 \div  \cos( \alpha )  \\  \\  = 2 \sec( \alpha )

sin²a + cos²a = 1

seca = 1/cosa

I hope this answer helps you and if it does plz mark me as brainliest.

Thank you

Similar questions