Math, asked by heeeeema, 1 year ago

prove (1+ tan^ 2 theta )( 1+ sin theta)( 1- sin theta) is equal to 1

Answers

Answered by jitekumar4201
128

Answer:

We have to show that:

(1+\tan^2\theta)(1+\sin\theta)(1-\sin\theta)=1

Let us start by taking left hand side:

L.H.S=(1+\tan^2\theta)(1+\sin\theta)(1-\sin\theta)

As we know:-

1+\tan^2\theta=\sec^2\theta

and

(a+b)(a-b)=a^2-b^2

L.H.S=(\sec^2\theta)((1)^2-(\sin\theta)^2)\\L.H.S=(\sec^2\theta)(1-\sin^2\theta)

We know that:-

\sec^2\theta=\dfrac{1}{\cos^2\theta}\\1-\sin^2\theta=cos^2\theta

Finally we have,

L.H.S.=\dfrac{1}{\cos^2\theta}\times \cos^2\theta=1\\L.H.S=R.H.S

Answered by CarliReifsteck
35

Given that,

The function is

(1+\tan^{2}\theta)(1+\sin\theta)(1-\sin\theta)=1

We need to prove the Left hand side equal to right hand side

Using given function

(1+\tan^{2}\theta)(1+\sin\theta)(1-\sin\theta)=1

Using left hand side,

=(1+\tan^{2}\theta)(1+\sin\theta)(1-\sin\theta)

We know that,

=(1+\tan^2\theta)=\sec^2\theta

Now put the value of  [tex](1+\tan^2\theta)

=\sec^2\theta(1-\sin^2\theta)

We know that,

=(1-\sin^2\theta)=\cos^2\theta

=\sec^2\theta\cos^2\theta

=\sec^2\theta\times\dfrac{1}{\sec^2\theta}

=1

R.H.S

Hence, That is proved.

Similar questions