Math, asked by mayank6964, 1 year ago

prove ...................​

Attachments:

Answers

Answered by Anonymous
4

 \frac{ \tan \alpha  +  \sin \alpha   }{ \tan\alpha  -  \sin \alpha   }  =  \frac{ \sec \alpha  + 1 }{ \sec \alpha  - 1 }

On taking L.H.S. :

 \frac{ \tan\alpha +  \sin\alpha   }{ \tan \alpha  -  \sin \alpha  }  \\  \\  =  >  \frac{ \frac{ \sin \alpha }{ \cos \alpha   } +  \sin \alpha   }{ \frac{ \sin \alpha  }{ \cos \alpha  }  -  \sin \alpha  }  \\  \\  =  >  \frac{ \sin \alpha ( \frac{1}{ \cos \alpha }  + 1)}{ \sin \alpha ( \frac{1}{ \cos \alpha  } - 1) }  \\  \\  =  >  \frac{ \sec \alpha  + 1 }{ \sec \alpha  - 1 }

=> R.H.S.

HENCE PROVED

I hope it will be helpful for you ✌️✌️

Plz follow me ☺️☺️

Answered by sanjeevravish321
0

Answer:

Step-by-step explanation:

mark me i needed

The answer is here,

Given that,

= > \: \frac{a + ib}{c + id} = p + iq

We can replace the " i " as " -i ".

= > \frac{a - ib}{c - id} = p - iq

Similar questions