Prove
2(sin6A+cos6A)-3(sin4A+cos4A)+1=0
Answers
Answered by
62
Hey, please look at the attachment :)
Attachments:
Shum:
Thnkuuu☺
Answered by
52
Solution:
Given
i )
______________________
We know the algebraic identity:
a³+b³+3ab(a+b) = (a+b)³
=> a³+b³ = (a+b)³-3ab(a+b)
By Trigonometric identity:
sin²A + cos²A = 1
______________________
=
= (sin²A+cos²)³-3sin²Acos²A(sin²Acos²A)
= 1-3sin²Acos²A ----(1)
ii )
______________________
We know the algebraic identity:
a²+b²+2ab = (a+b)²
=> a²+b² = (a+b)²-2ab
______________________
Here ,
sin⁴A + cos⁴A
= (sin²A)²+(cos²A)²
= (sin²A+cos²A)²-2sin²Acos²A
= 1 - 2sin²Acos²A ----(2)
Now ,
LHS =
/* from (1)&(2),we get
= 2(1-3sin²Acos²A)-3(1-2sin²Acos²A)+1
= 2-6sin²Acos²A-3-6sin²Acos²A+1
= 2-3+1
= 0
= RHS
••••
Similar questions