Math, asked by latakj18, 9 months ago

prove 3^n+4 -9.3^n+1/9.3^n+1 = 2

Answers

Answered by BrainlyPopularman
22

Question :

   \\ \:  \:  { \bold { prove \:  \: that \:  :  \: \dfrac{ {3}^{n + 4}  - 9. {3}^{n + 1} }{ 9.{3}^{n + 1} } = 2 }} \\

ANSWER :

TO PROVE :

   \\ \:  \implies \:  { \bold { \dfrac{ {3}^{n + 4}  - 9. {3}^{n + 1} }{ 9.{3}^{n + 1} } = 2 }} \\

SOLUTION :

• Let's take L.H.S.

   \\ \:   \:  { \bold { =  \dfrac{ {3}^{n + 4}  - 9. {3}^{n + 1} }{ 9.{3}^{n + 1} }  }} \\

• We know that –

   \\ \:   \longrightarrow  \large \: { \bold { {a}^{b + c}   =  {a}^{b} . {a}^{c}  }} \\

• So that –

   \\ \:   \:  { \bold { =  \dfrac{ {3}^{n }  . {3}^{4} - 9. 3.{3}^{n } }{ 9.{3}^{n } .3}  }} \\

   \\ \:   \:  { \bold { =  \dfrac{ {3}^{n }  . {3}^{4} -  { 3}^{2} . 3.{3}^{n } }{  { 3}^{2}.{3}^{n } .3}  }} \\

   \\ \:   \:  { \bold { =  \dfrac{ {3}^{n }  . {3}^{4} -  { 3}^{3} .{3}^{n } }{ {3}^{n } .{3}^{3}}  }} \\

   \\ \:   \:  { \bold { =  \dfrac{ \cancel{ {3}^{n } } ( {3}^{4} -  { 3}^{3} )}{ \cancel{ {3}^{n }} .{3}^{3}}  }} \\

   \\ \:   \:  { \bold { =  \dfrac{  ( {3}^{4} -  { 3}^{3} )}{{3}^{3}}  }} \\

   \\ \:   \:  { \bold { =  \dfrac{  81-  27}{27}  }} \\

   \\ \:   \:  { \bold { =   \cancel\dfrac{ 54}{27}  }} \\

   \\ \:   \:  { \bold { =   2}} \\

   \\ \:   \:  { \bold { =   R.H.S. \:  \:  \:  \:  \:  \:  \:  \: (Hence \:  \: proved)}} \\

Answered by Anonymous
21

To Prove :-

\sf{\implies \frac{ {(3)}^{n + 4} -  {(9.3)}^{n + 1}  }{(9.3)^{n + 1} }  = 2 }    \\

Solution :-

According to the law of exponent .

\sf{\implies  {a}^{m + n}  =  {a}^{m} . {a}^{n} }\\

\sf{  \implies \:  ({a}^{m} )^{n}  =  {a}^{mn}}   \\

Taking LHS :-

\sf{\implies \frac{ {(3)}^{n + 4} -  {(9.3)}^{n + 1}  }{(9.3)^{n + 1} }   }    \\

\sf{\implies \frac{ {(3)}^{n} . {(3)}^{4} -  {(3.3.3)}^{n+1}  }{(9.3)^{n}.{(9.3)}^{1}  }   }    \\

\sf{\implies \frac{ {(3)}^{n} . {(3)}^{4} -  {3}^{2}. 3. {3}^{n} }{(9.3)^{n}.{(9.3)}^{1}  }   }    \\

→ 9 × 3 = 3³

\sf{\implies \:   \frac{( {3}^{n}. {3}^{4}  )-  ( {3}^{3}. {3}^{n} ) }{ {3}^{3}. {3}^{n}  } }\\

Taking 3^n common in the numerator .

\sf{ \implies \:   \frac{{3}^{n}(  {3}^{4}  -  ( {3}^{3}. ) }{ {3}^{3}. {3}^{n}  } }\\

\sf{ \implies \:   \frac{\cancel{{3}^{n}}(  {3}^{4}  -  ( {3}^{3}. ) }{ {3}^{3}. \cancel{ {3}^{n}}  } }\\

  \sf{ \implies \:  \frac{81 - 27}{27}  =  \frac{54}{27} } \\

2 . = RHS = LHS

Hence proved

Similar questions