Math, asked by mecwankhushi, 3 months ago

Prove: [4m/3 -3/4n]^2 2mn

Attachments:

Answers

Answered by ILLUSTRIOUS27
2

Given

LHS

 \bf \: \{  \dfrac{4m}{3}  -  \dfrac{3n}{4}\}^{2}  + 2mn

RHS

 \bf \:  \dfrac{16 {m}^{2} }{9}  +  \dfrac{9 {n}^{2} }{16}

To Prove

LHS=RHS

Proof

LHS

  • Open bracket using identity
  •  \boxed{ \rm \: (a - b) ^{2} =  {a}^{2} +  {b}^{2} - 2ab   }

 \rm \:  \dfrac{16 {m}^{2} }{9}   +   \dfrac{9 {n}^{2} }{16}  - 2 \times  \dfrac{4m}{3}  \times  \dfrac{3n}{4}  + 2mn \\  \\  \implies \rm \frac{16 {m}^{2} }{9}  +  \frac{9 {n}^{2} }{16}  - 2mn + 2mn \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \:  \frac{16 {m}^{2} }{9}  +  \dfrac{9 {n}^{2} }{16}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \underline{\boxed{ \huge \bf \: LHS =  \frac{16 {m}^{2} }{ 9 } +  \frac{9 {n}^{2} }{16}  }}

 \underline{ \boxed{ \huge \rm \: RHS  = \bf \:  \dfrac{16 {m}^{2} }{9}  +  \dfrac{9 {n}^{2} }{16} }}

LHS=RHS

HENCE PROVED

Similar questions