Math, asked by anjali3421, 9 months ago

prove √7 is ir-rational number​

Answers

Answered by RISH4BH
82

\large{\underline{\underline{\red{\sf{Given:}}}}}

  • \tt{A\: irrational\:number\:is\:given.}

\large{\underline{\underline{\red{\sf{To\:Prove:}}}}}

  • \tt{\sqrt{7}\:is\:a\: irrational\:number.}

\large{\underline{\underline{\red{\sf{Proof:}}}}}

\tt{Given\:number\:is\:\sqrt{7}.}

So , on the contrary let us assume that √7 is a Rational number . So it can be expressed in the form of p/q , where p and q are integers and q ≠ 0. Also HCF of p & q is 1 which means p and q are co - primes.

\underline{\purple{\rm{\leadsto As\:per\:our\: assumption:- }}}

\tt{\implies \sqrt{7}=\dfrac{p}{q}}

\tt{\implies (\sqrt{7})^2=(\dfrac{p}{q})^2}

\tt{\implies 7 = \dfrac{p^2}{q^2}}

\green{\tt{\implies p^2=7q^2}}

  • This implies that 7 is a factor of p² .So by "Fundamental Theorem of Arthemetic " we can say that 7 is a factor of p also.

\orange{\tt{Let\: p = 7k}}

\pink{\sf{Putting \:this\: value\:in\:above\:equ^n}}

\tt{\implies p^2=7q^2 }

\tt{\implies (7k)^2=7q^2}

\tt{\implies 49k^2=7q^2}

\tt{\implies q^2=\dfrac{49k^2}{7}}

\tt{\implies q^2 = 7k^2 }

  • This implies that 7 is a factor of q² .So by "Fundamental Theorem of Arthemetic " we can say that 7 is a factor of q also.

But this contradicts our assumption that p and q are co- primes , since we found that 7 is also a factor of p and q .

Hence our assumption was wrong .√7 must not be a Rational number .

\red{\rm{\underset{\green{Hence\:Proved}}{\underbrace{\mapsto Hence \:\sqrt{7}\:is\:a\: irrational\:number.}}}}

_________________________________

\large{\underline{\underline{\red{\tt{\dag Extra\: Information:}}}}}

\underline{\purple{\rm{\leadsto  Some\:properties\:of\: Irrational\:number :- }}}

\orange{\tt{\mapsto Sum\:of\: Rational\:and\: Irrational\:is\:Irrational. }}

\orange{\tt{\mapsto Sum\:of\:two\: Irrational\:may\:or\:may\:not\:be\:Irrational. }}

\orange{\tt{\mapsto Product \:of\: Rational\:and\: Irrational is Irrational}}

\orange{\tt{\mapsto Product\:of\:two\: Irrational\:may\:or\:may\:not\:be\: Irrational }}

\orange{\tt{\mapsto Difference\:of\: Rational\:and\: Irrational\:is\:Irrational. }}

\orange{\tt{\mapsto Difference\:of\:two\: Irrational\:may\:or\:may\:not\:be\:Irrational. }}

\orange{\tt{\mapsto Division\:of\: Rational\:and\: Irrational\:is\:Irrational. }}

\orange{\tt{\mapsto Division\:of\:two\: Irrational\:may\:or\:may\:not\:be\:Irrational. }}

Similar questions