Prove and deduce that
y=(sin-1x)2
Then
Prove
1) (1-x2)y2-xy1-2=0
2)(1-x2)yn+2-(2n+1)xyn+1-n2yn=0
Answers
...........(1)
.........(2)
.........(3)
Answer:
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
0
where
y
=
(
sin
−
1
x
)
2
Using the result:
d
d
x
(
arcsin
x
)
=
1
√
1
−
x
2
In conjunction with the chain rule, then differentiating
y
=
(
sin
−
1
x
)
2
wrt
x
we have:
d
y
d
x
=
2
arcsin
x
√
1
−
x
2
And differentiating a second time, in conjunction with the quotient rule, we have:
d
2
y
d
x
2
=
(
√
1
−
x
2
)
(
2
√
1
−
x
2
)
−
(
1
2
(
−
2
x
)
√
1
−
x
2
)
(
2
arcsin
x
)
(
√
1
−
x
2
)
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
And so, considering the LHS of the given expression:
L
H
S
=
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
(
1
−
x
2
)
⎧
⎪
⎨
⎪
⎩
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
⎫
⎪
⎬
⎪
⎭
−
x
{
2
arcsin
x
√
1
−
x
2
}
−
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
−
2
x
arcsin
x
√
1
−
x
2
−
2
=
0
QED
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
0
where
y
=
(
sin
−
1
x
)
2
Using the result:
d
d
x
(
arcsin
x
)
=
1
√
1
−
x
2
In conjunction with the chain rule, then differentiating
y
=
(
sin
−
1
x
)
2
wrt
x
we have:
d
y
d
x
=
2
arcsin
x
√
1
−
x
2
And differentiating a second time, in conjunction with the quotient rule, we have:
d
2
y
d
x
2
=
(
√
1
−
x
2
)
(
2
√
1
−
x
2
)
−
(
1
2
(
−
2
x
)
√
1
−
x
2
)
(
2
arcsin
x
)
(
√
1
−
x
2
)
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
And so, considering the LHS of the given expression:
L
H
S
=
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
(
1
−
x
2
)
⎧
⎪
⎨
⎪
⎩
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
⎫
⎪
⎬
⎪
⎭
−
x
{
2
arcsin
x
√
1
−
x
2
}
−
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
−
2
x
arcsin
x
√
1
−
x
2
−
2
=
0
QED
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
0
where
y
=
(
sin
−
1
x
)
2
Using the result:
d
d
x
(
arcsin
x
)
=
1
√
1
−
x
2
In conjunction with the chain rule, then differentiating
y
=
(
sin
−
1
x
)
2
wrt
x
we have:
d
y
d
x
=
2
arcsin
x
√
1
−
x
2
And differentiating a second time, in conjunction with the quotient rule, we have:
d
2
y
d
x
2
=
(
√
1
−
x
2
)
(
2
√
1
−
x
2
)
−
(
1
2
(
−
2
x
)
√
1
−
x
2
)
(
2
arcsin
x
)
(
√
1
−
x
2
)
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
And so, considering the LHS of the given expression:
L
H
S
=
(
1
−
x
2
)
d
2
y
d
x
2
−
x
d
y
d
x
−
2
=
(
1
−
x
2
)
⎧
⎪
⎨
⎪
⎩
2
+
2
x
arcsin
x
√
1
−
x
2
1
−
x
2
⎫
⎪
⎬
⎪
⎭
−
x
{
2
arcsin
x
√
1
−
x
2
}
−
2
=
2
+
2
x
arcsin
x
√
1
−
x
2
−
2
x
arcsin
x
√
1
−
x
2
−
2
=
0
QED
v
Step-by-step explanation: