Math, asked by imrani1, 1 year ago

prove (b) no....☺☺☺☺

Attachments:

Arey: in the question of tan theta
Arey: just change value of tan into term of sin/cos and sec to 1/cos
Arey: first solve LHS
Arey: and then Convert RHS in simple form
Arey: ur welcome

Answers

Answered by Avengers00
10
\underline{\underline{\Huge{\textbf{Question:}}}}

\sf\textsf{Prove that:}

\LARGE{\mathbf{\dfrac{\tan\, \theta+\sin\, \theta}{\tan\, \theta-\sin\, \theta} = \dfrac{\sec\, \theta+1}{\sec\, \theta-1}}} ———[1]

\\


\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\LARGE{\textsf{Step-1:}}}

\textsf{Consider LHS of Eq.[1]}

\underline{\Large{\textbf{LHS\: =\:}}}

\implies \mathbf{\dfrac{\tan\, \theta+\sin\, \theta}{\tan\, \theta-\sin\, \theta}}

\\


\underline{\LARGE{\textsf{Step-2:}}}

\textsf{Express tan in terms of sin and cos}

\quad\LARGE{\boxed{\quad\bigstar\;\; \mathbf{\tan\, \theta = \dfrac{\sin\, \theta}{\cos\, \theta} \quad}}}

\implies \mathbf{\dfrac{\left(\dfrac{\sin \: \theta}{\cos\, \theta} \right) +\sin\, \theta}{\left(\dfrac{\sin\, \theta}{\cos\, \theta} \right)-\sin\, \theta}}

\\


\underline{\LARGE{\textsf{Step-3:}}}

\textsf{Combine the terms in both Numerator}\\\sf\textsf{and Denominator and simplify}

\implies \mathsf{\dfrac{ \dfrac{\sin\, \theta + \sin\, \theta \cdot \cos \, \theta}{\cos \: \theta}}{\dfrac{\sin\, \theta - \sin\, \theta \cdot \cos \theta}{\cos \: \theta}}}

\implies \mathsf{\dfrac{\sin\, \theta + \sin\, \theta \cdot \cos \, \theta}{\cancel{\cos \: \theta}}\times \dfrac{\cancel{\cos\, \theta}}{\sin\, \theta - \sin\, \theta \cdot \cos \, \theta}}

\implies \mathsf{\dfrac{\sin\, \theta+\sin\, \theta\cdot\cos\, \theta}{\sin\, \theta-\sin\, \theta\cdot\cos\, \theta}}

\\


\underline{\LARGE{\textsf{Step-4:}}}

\textsf{Take $\sin\, \theta$ common in both Numerator}\\\sf\textsf{and Denominator to cancel}

\implies \mathsf{\dfrac{\cancel{\sin\, \theta}\, (1+\cos\, \theta)}{\cancel{\sin\, \theta}\, (1-\cos\, \theta)}}

\implies \mathsf{\dfrac{1+\cos\, \theta}{1-\cos\, \theta}}

\\


\underline{\LARGE{\textsf{Step-5:}}}

\sf\textsf{Express cos in terms of sec}

\quad\LARGE{\boxed{\quad\bigstar\;\; \mathbf{\cos\, \theta = \dfrac{1}{\sec\, \theta} \quad}}}

\implies \mathsf{\dfrac{1+ \left(\dfrac{1}{\sec\, \theta}\right)}{1-\left(\dfrac{1}{\sec\, \theta}\right)}}

\\


\underline{\LARGE{\textsf{Step-6:}}}

\textsf{Combine the terms in both Numerator}\\\sf\textsf{and Denominator and simplify}

\implies \dfrac{\dfrac{\sec\, \theta+1}{\sec\, \theta}}{ \dfrac{\sec\, \theta-1}{\sec \: \theta}}

\implies \mathsf{\dfrac{\sec\, \theta+1}{\sec\, \theta-1}\times \dfrac{\cancel{\sec\, \theta}}{\cancel{\sec\, \theta}}}

\implies \mathsf{\dfrac{\sec\, \theta+1}{\sec\, \theta-1}}

\underline{\Large{\textbf{\: =\:RHS}}}


\\

\\

\blacksquare\; \; \underline{\LARGE{\textbf{Hence Proved}}}
Similar questions