Math, asked by payalshete16898, 11 months ago

prove by mathematical induction. 5+10+15+.....+5n=5n(n+1)/2.​

Answers

Answered by gautam2265
1

Step-by-step explanation:

15 लाख की तीसरी क़िस्त मिलने पर सभी को बधाइयां

जिनको नहीं मिली वह अपनी उम्मीद और आलू संभाल के रखें !!

Answered by SocioMetricStar
15

The prove of the given statement by mathematical induction is shown in explanation part.

Step-by-step explanation:

The given statement is

5+10+15+...+5n=\frac{5n(n+1)}{2}

For n = 1

5=\frac{5\cdot1(1+1)}{2}\\\\5=5\cdot1\\\\5=5=>\text{ True}

Hence, the given statement is true for n = 1

Let the given statement is true for n = k

So, we have

P(k)=5+10+15+...+5k-5+5k=\frac{5k(k+1)}{2}

Now, we have to prove that the statement is true for n = k+1

Substitute n = k+1

5+10+15+...+\frac{5(k+1)(k+1+1)}{2}\\\\5+10+15+...+\frac{(5k+5)(k+2)}{2}\\\\5+10+15+...+\frac{5k^2+15k+10}{2}\\\\5+10+15+...+\frac{5k(k+3)}{2}+5\\\\5+10+15+...+\frac{5k(k+1}{2}+\frac{10k}{2}+5\\\\5+10+15+...+\frac{5k(k+1}{2}+5k+5\\\\P(k)+5(k+1)

It means that it is true for n = k+1 as well

Hence, from mathematical induction, we can say that

5+10+15+...+5n=\frac{5n(n+1)}{2}

#Learn More:

Prove it by mathematical induction

https://brainly.in/question/9369092

Similar questions