Math, asked by sumitshetty18, 19 days ago

prove by method of induction that
5 +  {5}^{2}  +  {5}^{3}  + .... +   {5}^{n}  =  \frac{5}{4}( {5}^{n}  - 1)

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

To prove by Principal of Mathematical Induction,

\rm \: 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{n} = \dfrac{5( {5}^{n}  - 1)}{4}  \\

Let assume that

\rm \: P(n) : 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{n} = \dfrac{5( {5}^{n}  - 1)}{4}  \\

Step :- 1 For n = 1

\rm \: P(1) : 5  = \dfrac{5( {5}^{1}  - 1)}{4}  \\

\rm \: P(1) : 5  = \dfrac{5(5 - 1)}{4}  \\

\rm \: P(1) : 5  = \dfrac{5 \times 4}{4}  \\

\rm \: P(1) : 5  = 5  \\

\rm\implies \:P(n) \: is \: true \: for \: n = 1 \\

Step :- 2 For n = k, Assume that P(n) is true, where k is a natural number.

\rm \: P(k) : 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{k} = \dfrac{5( {5}^{k}  - 1)}{4}  \\

Step :- 3 For n = k + 1, We have to prove that P(n) is true.

That means, now we have to prove that

\rm \: P(k + 1) : 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{k} +  {5}^{k + 1}  = \dfrac{5( {5}^{k + 1}  - 1)}{4}  \\

Consider LHS

\rm \: 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{k} +  {5}^{k + 1} \\

\rm \:  =  \: (5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{k}) +  {5}^{k + 1} \\

On substituting the value from step 2, we get

\rm \:  =  \: \dfrac{5( {5}^{k} - 1) }{4}  +  {5}^{k + 1}  \\

\rm \:  =  \: \dfrac{ {5}^{k + 1} - 5}{4}  +  {5}^{k + 1}  \\

\rm \:  =  \: \dfrac{ {5}^{k + 1} - 5 + 4. {5}^{k + 1} }{4} \\

\rm \:  =  \: \dfrac{ {5}^{k + 1}(1 + 4) - 5}{4} \\

\rm \:  =  \: \dfrac{ {5}^{k + 1}(5) - 5}{4} \\

\rm \:  =  \: \dfrac{5( {5}^{k + 1} - 1)}{4} \\

\rm\implies \:P(n) \: is \: true \: for \: n = k + 1 \\

Hence,

By the process of Principal of Mathematical Induction,

\boxed{\tt{  \:  \: \rm \: 5 +  {5}^{2} +  {5}^{3} +  -  -  -  +  {5}^{n} = \dfrac{5( {5}^{n}  - 1)}{4} \:  \: }}  \\

Similar questions