prove
cos^2(A+120)+cos^2(A-120)+cos^2(A)=1.5
Answers
Answer:
The proof is as follows
Cos 2A = 2Cos2(A) – 1
Cos 2A + 1 = 2 Cos 2 ( A )
(1 + Cos 2A) /2 = Cos 2A
i.e Cos 2A = (1 + Cos 2A)/2
\begin{gathered}{array}{l}{\frac{1+\cos (2(A-120))}{2}+\cos 2 A+\frac{1+\cos (2(A+120))}{2}}\\ {\frac{1+\cos ((2 A-240))+1+1+\cos ((2 A+240))}{2}+\cos 2 A}\\ {1+\frac{\cos ((2 A-240))+1+1+\cos ((2 A+240))}{2}+\cos 2 A}\\ {1+\frac{2 \cos 2 A \cos 240}{2}+\cos 2 A}{array}\end{gathered}arrayl21+cos(2(A−120))+cos2A+21+cos(2(A+120))21+cos((2A−240))+1+1+cos((2A+240))+cos2A1+2cos((2A−240))+1+1+cos((2A+240))+cos2A1+22cos2Acos240+cos2Aarray
1 + Cos2 A( -1/2 ) + Cos2 A
1- ( 2 Cos 2A -1) ( 1/2 ) + Cos2A
1 – Cos2A + ( 1/2 ) + Cos2 A
= 3/2
Answer
cos
2
A+cos
2
(120
∘
+A)+cos
2
(120
∘
−A)=cos
2
A+
2
1
(1+cos(240
∘
+2A))+
2
1
(1+cos(240
∘
−2A))
=cos
2
A+1+
2
1
(cos(240
∘
+2A)+cos(240
∘
−2A))
=1+cos
2
A+
2
1
(2cos240
∘
cos2A)
=1+cos
2
A−
2
1
(2cos
2
A−1)
=1+
2
1
=
2
3
cos2A+cos2(120∘+A)+cos2(120∘−A)=cos2A+21(1+cos(240∘+2A))+21(1+cos(240∘−2A))
=cos2A+1+21(cos(240∘+2A)+cos(240∘−2A))
=1+cos2A+21(2cos240∘cos2A)
=1+cos2A−21(2cos2A−1)
=1+21=23
cos2A+cos2(120∘+A)+cos2(120∘−A)=cos2A+21(1+cos(240∘+2A))+21(1+cos(240∘−2A))
=cos2A+1+21(cos(240∘+2A)+cos(240∘−2A))
=1+cos2A+21(2cos240∘cos2A)
=1+cos2A−21(2cos2A−1)
=1+21=23