Math, asked by ushna45, 7 months ago

prove cos^3a +sin^3a/Cos a +sin a + cos^-sin^3a / cos a-sin a =2​

Attachments:

Answers

Answered by BrainlyIAS
9

To Prove :

 \sf \dfrac{cos^3A+sin^3A}{cos\ A+sin\ A}+\dfrac{cos^3A-sin^3A}{cos\ A-sin\ A}=2

Proof :

LHS

\to \sf \dfrac{cos^3A+sin^3A}{cos\ A+sin\ A}+\dfrac{cos^3A-sin^3A}{cos\ A-sin\ A}

  • a³ + b³ = ( a + b ) ( a² - ab + b² )
  • a³ - b³ = (  a - b ) ( a² + ab + b² )

\\ \to \sf \tiny{\dfrac{\cancel{(cos\ A+sin\ A)}(cos^2A-cos\ A.sin\ A+sin^2A)}{\cancel{cos\ A+ sin\ A}} +\dfrac{\cancel{(cos\ A-sin\ A)}(cos^2A+cos\ A.sin\ A+sin^2A)}{\cancel{cos\ A-sin\ A}}}\\

\\ \to \sf (cos^2-cos\ A.sin\ A+sin^2A)+(cos^2A+cos\ A.sin\ A+sin^2A)\\

\\ \to \sf (cos^2-\cancel{cos\ A.sin\ A}+sin^2A)+(cos^2A+\cancel{cos\ A.sin\ A}+sin^2A)\\

\\ \to \sf (cos^2+sin^2A)+(cos^2A+sin^2A)\\\\

  • sin²θ + cos²θ = 1

\\\to\ \sf 1 + 1\\

\\ \leadsto\ \sf 2\ \; \pink{\bigstar} \\

RHS

Similar questions