Math, asked by crexgaming2003, 7 months ago

prove: cos theta ÷ sec theta - tan theta = 1 + sin theta​

Answers

Answered by Ataraxia
6

TO PROVE :-

\sf \dfrac{cos\theta}{sec\theta-tan\theta}= 1+sin \theta

SOLUTION :-

L.H.S = \sf\dfrac{cos\theta}{sec\theta-tan\theta}

We know that,

\bullet\bf \ sec\theta= \dfrac{1}{cos\theta} \\\\\bullet\bf \ tan\theta = \dfrac{sin\theta}{cos\theta}

            = \sf \dfrac{cos\theta}{\dfrac{1}{cos\theta} - \dfrac{sin\theta}{cos\theta}} \\\\\\= \dfrac{cos\theta}{\dfrac{1-sin\theta}{cos\theta}} \\\\= cos\theta \times \dfrac{cos\theta}{1-sin\theta} \\\\= \dfrac{cos^2\theta} {1-sin\theta}

We know that,

\bullet\bf \ cos^2\theta = 1-sin^2\theta

             = \sf \dfrac{1-sin^2\theta}{1-sin\theta} \\\\= \dfrac{(1-sin\theta) \times (1+sin \theta)} {1-sin\theta}\\\\= 1+sin\theta \\\\= R.H.S

Hence proved.

Similar questions