Prove :- (cos20° + cos10°) / (cos20° - sin10°) = (root of 3) tan40°
Answers
Answered by
5
(cos10° + sin20°) / (cos20° - sin10°)
= tan60° * (cos60°/sin60°) * [(cos10° + sin20°) / (cos20° - sin10°)]
= tan60° * [(2cos60° cos10° + 2cos60° sin20°) / (2sin60°cos20° - 2sin60° sin10°)]
= √3 * [(cos70° + cos50° + sin80° - sin40°) / (sin80° + sin40° - cos50° + cos70°)]
= √3 * [(cos70° + cos50° + sin80° - cos50°) / (sin80° + cos50° - cos50° + cos70°)]
.......................................... sin40° = cos50°]
= √3 * [(cos70° + sin80°) / (sin80° + cos70°)]
= √3
= 1.732050808.
= tan60° * (cos60°/sin60°) * [(cos10° + sin20°) / (cos20° - sin10°)]
= tan60° * [(2cos60° cos10° + 2cos60° sin20°) / (2sin60°cos20° - 2sin60° sin10°)]
= √3 * [(cos70° + cos50° + sin80° - sin40°) / (sin80° + sin40° - cos50° + cos70°)]
= √3 * [(cos70° + cos50° + sin80° - cos50°) / (sin80° + cos50° - cos50° + cos70°)]
.......................................... sin40° = cos50°]
= √3 * [(cos70° + sin80°) / (sin80° + cos70°)]
= √3
= 1.732050808.
Answered by
3
Pls mark as brainliest pls
Attachments:
Similar questions
English,
8 months ago
Hindi,
8 months ago
Business Studies,
1 year ago
Math,
1 year ago
English,
1 year ago