PROVE:
cos³ A+sin³ A/cosA+sinA +cos³ A-sin³A/cosA-sinA=2
Answers
Answered by
83
L.H.S=
L.H.S=
L.H.S=
L.H.S=
L.H.S=
L.H.S=
L.H.S=
L.H.S=2
L.H.S=R.H.S
yashucool:
IF YOU HVE ANY CONFUDION U CAN ASK ME
Answered by
21
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
so cos^3A+sin^3A=(cosA+sinA)(cos^2A-cosAsinA+sin^2A)
so [cos^3A+sin^3A]/[cosA+sinA]=1-sinAcosA......................1
sin^2A+cos^2A=1
similarly
cos^A-sin^2A=(cosA-sinA)(cos^2A+sinAcosA+sin^2A)
so
[cos^3A-sin^3A]/[cosA-sinA]=1+sinAcosA.............................2
so adding both equation
1-sinAcosA+1+sinAcosA
2
LHS=RHS
a^3-b^3=(a-b)(a^2+ab+b^2)
so cos^3A+sin^3A=(cosA+sinA)(cos^2A-cosAsinA+sin^2A)
so [cos^3A+sin^3A]/[cosA+sinA]=1-sinAcosA......................1
sin^2A+cos^2A=1
similarly
cos^A-sin^2A=(cosA-sinA)(cos^2A+sinAcosA+sin^2A)
so
[cos^3A-sin^3A]/[cosA-sinA]=1+sinAcosA.............................2
so adding both equation
1-sinAcosA+1+sinAcosA
2
LHS=RHS
Similar questions