Math, asked by Srijal2933, 9 months ago

Prove :cos40 + sin 40=root 2 cos 5

Answers

Answered by pulakmath007
58

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

 \displaystyle \: cos  \: C + cos \: D  =2 \:  cos \frac{C + D}{2}  \: cos \frac{C  -  D}{2}

TO PROVE

cos {40}^{ \circ}  + sin {40}^{ \circ}  =  \sqrt{2} \:  cos {5}^{ \circ}

PROOF

 cos {40}^{ \circ}  + sin {40}^{ \circ}

 = cos {40}^{ \circ}  + sin({90}^{ \circ} -  {50}^{ \circ}    )

 = cos {40}^{ \circ}  + cos  {50}^{ \circ}

   \displaystyle \: = 2 \: cos \frac{ {40}^{ \circ}  + {50}^{ \circ}  }{2} \:  \:  cos \frac{ {40}^{ \circ}   -  {50}^{ \circ}  }{2}

 = 2 \: cos {45}^{ \circ}   cos ( -  {5}^{ \circ}    \: )

 =2 \:  cos {45}^{ \circ}   cos  {5}^{ \circ}    \:

 \displaystyle \:  =2 \: \times  \frac{1}{ \sqrt{2} }   \times     cos  {5}^{ \circ}    \:

 \displaystyle \:  = \sqrt{2}   cos  {5}^{ \circ}    \:

Hence proved

Similar questions