Prove cos⁴A - cos²A = sin⁴A - sin²A.
Answers
Answered by
2
Prove that cos⁴A-cos²A=sin⁴A-sin²A.
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A
= RHS
Answered by
0
This is your answer.
LHS = cos⁴ A - cos² A
= cos²A( cos² A - 1 )
= ( 1 - sin² A )[ -( 1 - cos² A ) ]
= ( 1 - sin² A ) ( - sin² A )
= - sin² A + sin⁴ A
= sin⁴ A - sin² A
= RHS
Similar questions