Math, asked by layeekaisrath012, 7 months ago

prove : cos9x-cos5x/sin17x-sin3x = -sin2x/cos10x

Answers

Answered by jahnavi6758
5

Answer:

Mark my answer as brainliest. tq

Step-by-step explanation:

cosA−cosB=2sin(2A+B)sin(2B−A)

sinA−sinB=2cos(2A+B)sin(2A−B)

⇒L.H.S=sin17x−sin3xcos9x−cos5x

⇒2cos(10x)sin(7x)2sin(7x)sin(−2x)

⇒2cos(10x)sin7x−2sin(7x)sin(2x)

⇒−cos10xsin2x=R.H.S

Hence proved.....................

plz mark my answer as brainliest

Answered by llsmilingsceretll
29

\underline{\underline{\sf{\red{Given\::-}}}}

\sf \dfrac{cos9x - cos5x}{sin17x - sin3x}

\underline{\underline{\sf{\red{To\:Prove\::-}}}}

\sf \dfrac{cos9x - cos5x}{sin17x - sin3x} = \dfrac{-sin2x}{cos10x}

\underline{\underline{\sf{\red{Proof\::-}}}}

⌬ Identities that we will use :-

\sf cos\:A - cos\:B = -2sin\bigg\lgroup \dfrac{A + B}{2} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{A - B}{2} \bigg\rgroup

\sf sin\:A - sin\:B = 2cos\bigg\lgroup \dfrac{A + B}{2} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{A - B}{2} \bigg\rgroup

Now,

\longrightarrow\:\sf L.H.S = \dfrac{cos9x - cos5x}{sin17x - sin3x}

\longrightarrow\:\sf L.H.S = \dfrac{-2sin\bigg\lgroup \dfrac{9x + 5x}{2} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{9x - 5x}{2} \bigg\rgroup}{2cos\bigg\lgroup \dfrac{17x + 3x}{2} \bigg\rgroup\:.\: sin \bigg\lgroup \dfrac{17x - 3x}{2} \bigg\rgroup}

\longrightarrow\:\sf L.H.S = \dfrac{-2sin\bigg\lgroup \dfrac{14x}{2} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{4x}{2} \bigg\rgroup}{2cos\bigg\lgroup \dfrac{20x}{2} \bigg\rgroup\:.\: sin \bigg\lgroup \dfrac{14x}{2} \bigg\rgroup}

\longrightarrow\:\sf L.H.S = \dfrac{-2sin\bigg\lgroup \dfrac{\cancel{14}x}{\cancel{2}} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{\cancel{4}x}{\cancel{2}} \bigg\rgroup}{2cos\bigg\lgroup \dfrac{\cancel{20}x}{\cancel{2}} \bigg\rgroup\:.\:sin \bigg\lgroup \dfrac{\cancel{14}x}{\cancel{2}} \bigg\rgroup}\:(Cancelling)

\longrightarrow\:\sf L.H.S = \dfrac{-2sin7x\:.\:sin2x}{2cos10x\:.\:sin7x}

\longrightarrow\:\sf L.H.S = \dfrac{-\cancel{2}\cancel{sin7x}\:.\:sin2x}{\cancel{2}cos10x\:.\:\cancel{sin7x}}\:(CCancelling

\longrightarrow\:\sf L.H.S = \dfrac{-sin2x}{cos10x}

\pink{\bigstar}\:\underline{\underline{\bf{\blue{L.H.S = R H.S}}}}

\:\:\qquad\qquad\therefore\:\underline{\underline{\sf{\red{Hence,\:Proved!}}}}

Similar questions
Math, 11 months ago