prove costheta - sintheta +1 / costheta+sintheta+1 = sec theta - tantheta
Answers
we have to prove that,
(cosθ - sinθ + 1)/(cosθ + sinθ + 1) = secθ - tanθ
Proof : LHS = (cosθ - sinθ + 1)/(cosθ + sinθ + 1)
= (cosθ/cosθ - sinθ/cosθ + 1/cosθ)/(cosθ/cosθ + sinθ/cosθ + 1/cosθ)
= (1 - tanθ + secθ)/(1 + tanθ + secθ)
we know, sec²θ - tan²θ = 1
= (sec²θ - tan²θ - tanθ + secθ)/(1 + tanθ + secθ)
= {(secθ + tanθ)(secθ - tanθ) + (secθ - tanθ)}/(1 + tanθ + secθ)
= {(secθ - tanθ)(1 + secθ + tanθ)}/(1 + tanθ + secθ)
= secθ - tanθ = RHS
hence proved.
also read similar questions : Prove that
1 + costheta/sintheta-sintheta/1+costheta=2cot theta
https://brainly.in/question/15605608
prov that sintheta-costheta+1/sintheta+costheta-1=1/sectheta-tantheta
https://brainly.in/question/8898371
In attachment I have answered this problem...
I hope it's help you...