Math, asked by Pathanjuned9309, 1 year ago

Prove (Cosx+cosy)^2 + (sinx-siny)^2=4cos^2(x+y/2)

Answers

Answered by abhishekgupta9p3xux4
46
LHS=( cosx + cosy) = 2cos(x+y/2). cos(x-y/2)

( sinx - siny ). = 2cos(x+y/2).sin(x-y/2)
Attachments:
Answered by MaheswariS
26

\textbf{To prove:}

(cosx+cosy)^2+(sinx-siny)^2=4\,cos^2(\frac{x+y}{2})

\textbf{Solution:}

\text{Consider,}

(cosx+cosy)^2+(sinx-siny)^2

\text{Using}

\boxed{(a+b)^2=a^2+b^2+2ab}

\boxed{(a-b)^2=a^2+b^2-2ab}

=(cos^2x+cos^2y+2\,cosx\,cosy)+(sin^2x+sin^2y-2\,sinx\,siny)

=(cos^2x+sin^2x)+(cos^2y+sin^2y)+2(cosx\,cosy-sinx\,siny)

\text{Using}\;\boxed{cos^2\theta+sin^2\theta=1}

=1+1+2(cosx\,cosy-sinx\,siny)

=2+2\,cos(x+y)

=2(1+cos(x+y))

\text{We know that}

\boxed{cosA=2\,cos^2\frac{A}{2}-1\implies\,1+cosA=2\,cos^\frac{A}{2}}

=2(2\,cos^2(\frac{x+y}{2}))

=4\,cos^2(\frac{x+y}{2})

\implies\bf(cosx+cosy)^2+(sinx-siny)^2=4\,cos^2(\frac{x+y}{2})

Find more:

If sinθ+cosθ=x prove that sin6θ+cos6θ=4-3(x²-1)²/4

https://brainly.in/question/15923140

If l tan A + m sec A = n and l’tan A – m’sec A = n’, then show that (nl’ – ln’/ml’ + lm’)^2 = 1 + (nm’ – mn’/ lm’ + ml’) ^2

https://brainly.in/question/683329

Similar questions