prove cot square theta -tan squre theta=cosec squre theta-sec squre theta
Answers
Answered by
3
Step-by-step explanation:
Solution :-
On taking LHS
cot² θ - tan² θ
We know that
cosec² θ - cot² θ = 1 and
sec² θ - tan² θ = 1
=> (cosec² θ - 1 )-(sec² θ - 1)
=> cosec² θ - 1 - sec² θ + 1
=> cosec² θ - sec² θ +(1-1)
=> cosec² θ - sec² θ +(0)
=> cosec² θ - sec² θ
=> RHS
=> LHS = RHS
Therefore,
cot² θ - tan² θ = cosec² θ - sec² θ
Hence, Proved.
Answered by
0
Step-by-step explanation:
Step-by-step explanation:
Solution :-
On taking LHS
cot² θ - tan² θ
We know that
cosec² θ - cot² θ = 1 and
sec² θ - tan² θ = 1
=> (cosec² θ - 1 )-(sec² θ - 1)
=> cosec² θ - 1 - sec² θ + 1
=> cosec² θ - sec² θ +(1-1)
=> cosec² θ - sec² θ +(0)
=> cosec² θ - sec² θ
=> RHS
=> LHS = RHS
Therefore,
cot² θ - tan² θ = cosec² θ - sec² θ
Hence, Proved.
Similar questions
Math,
10 days ago
Social Sciences,
10 days ago
Hindi,
10 days ago
History,
9 months ago
Math,
9 months ago