Prove:-
Cot²θ (secθ -1)/(1+sinθ ) + sec²θ (sinθ -1) / ( 1+secθ ) = 0
━━━━━━━━━━━━━
Plz Give Answer in detail.....
Don't spam!!
Answers
Answered by
4
Solution
Take LHS
Cot²θ(secθ-1)/(1+sinθ)+ sec²θ(sinθ-1)/(1+secθ)
= cot²θ(secθ-1)(1+secθ)+sec²θ(sinθ-1)(1+sinθ) / (1+sinθ)(1+secθ)
= cot²θ(sec²-1)+sec²θ(sin ²-1) / (1+sin θ)(1+secθ)
= cot²θ tan ²θ+ sec²θ(-cos²θ)/ (1+sin θ) ( 1+sec θ)
= cot ²θ + tan²θ- sec²θcos²θ/ ( 1+ sin θ) ( 1+ sec θ)
= cot²θ×1/cot²θ - sec²θ×1/sec²θ / ( 1+sin θ) ( 1+ secθ)
= 1/(1+sin θ)(1+ secθ)
Hence proveed !!!
Similar questions