Math, asked by manojprasad555555555, 10 months ago

Prove formula
* cos 2x =1-tan2x/1+tan2x

Answers

Answered by Anonymous
5

 \huge \bf \underline \red{Answer}

___________________________________

 \sf \huge \underline{Question}

 \rm{ \cos(2x) =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2} x}}

_______________________________

step by step explanation:

 \tt{cos \: 2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2} x}}

 \tt{cos \: 2x =  {cos}^{2}x -  {sin}^{2}x =  { {cos}^{2}x -  {sin}^{2}x }^{1}}

 \tt \red{⟹ \:  =  \frac{ {cox}^{2}x  -  {sin}^{2} x}{ {cos}^{2}x +  {sin}^{2} x} }

 \tt \blue{⟹ \:  \frac{ {cos}^{2} x \: 1 -  \frac{ {sin}^{2}x }{ {cos}^{2}x } }{ {cos}^{2} x \: 1 +  \frac{ {sin}^{2}x }{ {cos}^{2} x}</u><u>}</u><u> }

 \tt \pink{⟹cos \: 2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2} x}}

I hope its help uh

Similar questions