Prove it . 1 = 2 It's challenging !!!! Isn't it ?
Answers
Answered by
0
1.Assume that we have two variables a and b, and that: a = b
2. Multiply both sides by a to get: a2 = ab
3. Subtract b2 from both sides to get: a2 - b2 = ab - b2
4. This is the tricky part: Factor the left side (using FOIL from algebra) to get (a + b)(a - b) and factor out b from the right side to get b(a - b). If you're not sure how FOIL or factoring works, don't worry—you can check that this all works by multiplying everything out to see that it matches. The end result is that our equation has become: (a + b)(a - b) = b(a - b)
5. Since (a - b) appears on both sides, we can cancel it to get: a + b = b
6. Since a = b (that's the assumption we started with), we can substitute b in for a to get: b + b = b
7. Combining the two terms on the left gives us: 2b = b
8. Since b appears on both sides, we can divide through by b to get: 2 = 1
2. Multiply both sides by a to get: a2 = ab
3. Subtract b2 from both sides to get: a2 - b2 = ab - b2
4. This is the tricky part: Factor the left side (using FOIL from algebra) to get (a + b)(a - b) and factor out b from the right side to get b(a - b). If you're not sure how FOIL or factoring works, don't worry—you can check that this all works by multiplying everything out to see that it matches. The end result is that our equation has become: (a + b)(a - b) = b(a - b)
5. Since (a - b) appears on both sides, we can cancel it to get: a + b = b
6. Since a = b (that's the assumption we started with), we can substitute b in for a to get: b + b = b
7. Combining the two terms on the left gives us: 2b = b
8. Since b appears on both sides, we can divide through by b to get: 2 = 1
Anushka2001:
mark it as the brainliest
Answered by
0
let a=b
then a2=ab
a2+a2=a2+ab
2a2=a2+ab
2a2-2ab=a2+ab-2ab
2a2-2ab=a2-ab
2(a2-ab)=1(a2-ab)
cancel a2-ab on both sides
Thus, 2=1
then a2=ab
a2+a2=a2+ab
2a2=a2+ab
2a2-2ab=a2+ab-2ab
2a2-2ab=a2-ab
2(a2-ab)=1(a2-ab)
cancel a2-ab on both sides
Thus, 2=1
Similar questions