Math, asked by subhamkumarkumar84, 11 months ago

Prove it guys........​

Attachments:

Answers

Answered by Anonymous
0

SOLUTION:-

Given:

(x-b)(x-c)+ (x-c)(x-a) +(x-a)(x-b)

=) x²-bx-cx+bx+x²-cx-ax+ca+x²-ax-bx+ab

=) x²+x²+x²-ax-ax-bx-bx-cx-cx+ab+bc+ca

=) 3x² -2ax -2bx -2cx +(ab+bc+ca)

=) 3x² -2ax (a+b+c) +(ab+bc +ca)

=) 3x² - 2(a+b+c)x + (ab+bc +ca)

Now,

Discriminate for above equation;

D=b² - 4ac

So,

D= {-2(a+b+c)}² - 4×3(ab+bc+ca)

=) 4(a+b+c)² - 12(ab+bc+ca)

=) 4[(a+b+c)² - 3(ab+bc+ca)]

=) 2×2×[a²+b²+c²+2ab+2bc+2ca-3ab-3bc-3ac

=) 2×2 ×[a² +b² +c² -ab-bc-ca]

=) 2[2a² +2b²+2c² -2ab-2bc -2ca]

=) 2[(a²+b²-2ab)+(b²+c²-2bc)+(c²+a²-2ca]

=) 2[(a-b)² + (b-c)² +(c-a)²]

Now,

Since, square of any quantity is either 0 or greater than 0 that is it's always +ve.

=) (a-b)² , (b-c)² ,(c-a)² are all +ve. no.

So,

2[(a-b)² + (b-c)² + (c-a)²

Discriminate is positive that is D=0.

It's Real roots.

For roots be equal & discriminate D=0

=) 2[(a-b)² + (b-c)² +(c-a)²]=0

=) (a-b)² + (b-c)² + (c-a)² =0

Since square number are always positive thus the above sum can be 0 only;

=) a-b = 0

=) b-c = 0

=) c-a = 0

So,

⚫a= b

⚫b= c

⚫c= a

Therefore,

=) a= b = c [proved]

Hope it helps ☺️

Similar questions