Math, asked by johnthomas12, 1 year ago

prove that [a+1÷a]^2 - [a-1÷a]^2=4​

Answers

Answered by Myurbhai
1

Step-by-step explanation:

(a+1/a) ^2-(a-1/a)^2=4

(a^2+1/a^2+2×a×1/a)-(a^2+1/a^2-2×a×1/a)=4

(a^2+1/a^2+2)-(a^2+1/a^2-2)=4

a^2+1/a^2+2-a^2-1/a^2+2=4

2+2=4

4=4

Answered by sujalmotagi
1

(a  +  \frac{1}{a} )^{2}  -  \: (a  + \frac{1}{a} )^{2}

((a +  \frac{1}{a}) + (a -  \frac{1}{a}) \times ((a  +  \frac{1}{a}) - (a -  \frac{1}{a}))

because

(a+b)(a-b)=a^2-b^2

back to the expression

(2a) \times (a +  \frac{1}{a}  - a +  \frac{1}{a})

2a( \frac{2}{a})

=4

Hence proven.

Please mark my answer brainliest

Similar questions