Math, asked by Vikshantmandal261120, 9 months ago

Prove it........ #### its urgent ​

Attachments:

Answers

Answered by rishu6845
5

Given---->

y \:  =  {e}^{m \:  {sin}^{ - 1}x }

To prove ---->

( \: 1 -  {x}^{2} ) \:  \dfrac{ {d}^{2}y }{d {x}^{2} }  \:  -  \: x \dfrac{dy}{dx}  \:  =  {m}^{2} y

Concept used ---->

1)

 \dfrac{d}{dx} ( \:  {e}^{x}  \: ) =  {e}^{x}

2)

 \dfrac{d}{dx}  \: ( \: cos ^{ - 1} x \: ) \:  =  -  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

3)

 \dfrac{d}{dx}  \: ( \: u \: v \: ) \:  = u \:  \dfrac{dv}{dx}  \:  +  \: v \:  \dfrac{du}{dx}

4)

 \dfrac{d}{dx} ( {x}^{2} ) = 2x

5)

y \: ( \: 1 \: ) \:  =  \dfrac{dy}{dx}

y \: ( \: 2 \: ) =  \dfrac{d^{2}y }{d {x}^{2} }

Solution---->

y \:  =  {e}^{m \:  {cos}^{ - 1} x}

differentiting \: with \: respect \: to \: x \: we \: get

 \dfrac{dy}{dx}  \:  = \dfrac{d}{dx} \: (  \: {e}^{m {cos}^{ - 1}x }  \: )

 \dfrac{dy}{dx}  \:  =  {e}^{m {cos}^{ - 1} x}  \dfrac{d}{dx}  \: (m \:  {cos}^{ - 1} x \: )

 \dfrac{dy}{dx}  \:  =  {e}^{m {cos}^{ - 1}x }  \: ( \:  -  \dfrac{m}{ \sqrt{1 -  {x}^{2} } }  \: )

 =  >  \sqrt{1 -  {x}^{2} }   \: \:  \dfrac{dy}{dx}  \:  =  - m \:  {e}^{m  \: {cos}^{ - 1} x}

 squaring \: both \: sides \: we \: get \:

 =  > ( \: 1 \:  -  {x}^{2}  \: ) \: ( \dfrac{dy}{dx}  \: )^{2}  \:  =  {m}^{2}  \: ( \:  {e}^{m {cos}^{ - 1} x}  \: ) ^{2}

putting \: y \:  =  \:  {e}^{m {cos}^{ - 1}x }  \: we \: get

 =  > ( \: 1 -  {x}^{2}  \: ) \:   ({ \frac{dy}{dx}) }^{2}  =  {m}^{2}  \:  {y}^{2}

differentiting \: with \: respect \: to \: x \: we \: get \:

 =  >  \dfrac{d}{dx} ( \:  \: (1 -  {x}^{2} ) \:  { (\dfrac{dy}{dx}) }^{2} ) =  {m}^{2}  \dfrac{d}{dx} ( {y}^{2} )

 =  > (1 -  {x}^{2} ) \: \dfrac{d}{dx} ( { \dfrac{dy}{dx} )}^{2}  \:  +  { (\dfrac{dy}{dx} )}^{2}  \:  \dfrac{d}{dx}  \: (1 -  {x}^{2} ) = 2 {m}^{2} y \:  \dfrac{dy}{dx}

 =  > (1 -  {x}^{2} ) \: 2 \:  \dfrac{dy}{dx}   \:  \: \dfrac{ {d}^{2} y}{d {x}^{2} }  +  ({ \dfrac{dy}{dx}) }^{2}  \: (0 - 2x) = 2 {m}^{2} y \:  \dfrac{dy}{dx}

 =  > (1 -  {x}^{2} ) \: 2 \:  \dfrac{dy}{dx}   \: \dfrac{ {d}^{2}y }{d {x}^{2} }   - 2x( \dfrac{dy}{dx} ) ^{2}  = 2 {m}^{2} y \:  \dfrac{dy}{dx}

 \: divided \: whole \: equation \: by \: 2 \:  \dfrac{dy}{dx}  \\ we \: get

 =  > (1 -  {x}^{2} ) \dfrac{ {d}^{2}y }{d {x}^{2} }  \:  - x \:  \dfrac{dy}{dx}  \:  =  {m}^{2} y

 =  > (1 -  {x}^{2} ) \: y(2) \:  - x \:  y(1)  = \:  {m}^{2} y

Answered by Anonymous
0

\huge\boxed{\fcolorbox{pink}{blue}{Answer}}

Attachments:
Similar questions