Prove it.Step wise.No mistakes.No spanning.
Attachments:
Answers
Answered by
3
Question.
Cos^6A+sin^6A=1-3cos^2A+3cos^4A .
Step-by-step explanation:
__________________________________________________________________________
L.H.S.
=>cos^6A+sin^6A.
=>(cos^2A)^3+(sin^2A)^3.
=>(cos^2A+sin^2A)(cos^4+sin^4- sin^2A*cos^2A) .
=>(1){(cos^2A)^2+(sin^2A)^2-sin^2A*cos^2A}.
=>{(cos^2A+sin^2A)^2-2cos^2A*sin^2A-sin^2A*cos^2A} .
=>(1)^2-3cos^2A*sin^2A.
=> 1-3cos^2A*sin^2A.
=>1-3cos^2A (1-cos^2A).
=>1-3cos^2A+3cos^4A.
=> R.H.S.
Formula used.
- a^3+b^3=(a+b)(a^2+b^2-ab).
- a^2+b^2=(a+b)^2-2ab.
- sin^2A=(1-cos^2A).
- sin^2A+cos^2A=1.
- (a+b)^2=a^2+b^2+2ab.
- (a-b)^2=a^2+b^2-2ab.
Similar questions