Prove it,
Answers
Step-by-step explanation:
Given Equation is sin⁻¹(3/5) - cos⁻¹(63/65) = 2tan⁻¹(1/5).
It can be written as,
⇒ -cos⁻¹(3/5) - 2tan⁻¹(1/5) = -sin⁻¹(3/5)
⇒ cos⁻¹(3/5) + 2tan⁻¹(1/5) = sin⁻¹(3/5)
LHS:
RHS
Hope it helps!
Answer:
Step-by-step explanation:
LHS:
=sin^{-1}\sqrt{1-(\frac{63}{65})^2} + sin^{-1} \frac{2 * \frac{1}{5}}{1 + (\frac{1}{5})^2}
=sin^{-1}\sqrt{1-\frac{3969}{4225}} + sin^{-1}\frac{\frac{2}{5}}{\frac{26}{25}}
=sin^{-1}\sqrt{\frac{256}{4225}} + sin^{-1}\frac{5}{13}
=sin^{-1}\frac{16}{65} + sin^{-1}\frac{3}{5}
=sin^{-1}[(\frac{16}{65}\sqrt{1-(\frac{5}{13})^2} + \frac{5}{13}\sqrt{1-(\frac{16}{65})^2}]
=sin^{-1}(\frac{16}{65} * \frac{12}{13} + \frac{5}{13} * \frac{63}{65})
=sin^{-1}(\frac{16*12+315}{13*65})
=sin^{-1}(\frac{507}{845})
=sin^{-1}(\frac{3}{5})
RHS
Hope it helps!