Math, asked by Swarnimkumar22, 1 year ago

Prove it,


 \bf \:  {sin}^{ - 1}  \frac{3}{5}  -  {cos}^{ - 1}  \frac{63}{65}  = 2 \: tan {}^{ - 1}  \frac{1}{5}

Answers

Answered by siddhartharao77
10

Step-by-step explanation:

Given Equation is sin⁻¹(3/5) - cos⁻¹(63/65) = 2tan⁻¹(1/5).

It can be written as,

⇒ -cos⁻¹(3/5) - 2tan⁻¹(1/5) = -sin⁻¹(3/5)

⇒ cos⁻¹(3/5) + 2tan⁻¹(1/5) = sin⁻¹(3/5)

\textbf{\underline{\underline{Important Formulas}}}

\boxed{cos^{-1}x = sin^{-1}\sqrt{1-x^2}}\boxed{2tan^{-1}x = sin^{-1} \frac{2x}{1+x^2}}

\boxed{sin^{-1}x + sin^{-1}y = sin^{-1}[(x\sqrt{1-x^2}] + y[\sqrt{1-x^2}]}

LHS:

=sin^{-1}\sqrt{1-(\frac{63}{65})^2} + sin^{-1} \frac{2 * \frac{1}{5}}{1 + (\frac{1}{5})^2}

=sin^{-1}\sqrt{1-\frac{3969}{4225}} + sin^{-1}\frac{\frac{2}{5}}{\frac{26}{25}}

=sin^{-1}\sqrt{\frac{256}{4225}} + sin^{-1}\frac{5}{13}

=sin^{-1}\frac{16}{65} + sin^{-1}\frac{3}{5}

=sin^{-1}[(\frac{16}{65}\sqrt{1-(\frac{5}{13})^2} + \frac{5}{13}\sqrt{1-(\frac{16}{65})^2}]

=sin^{-1}(\frac{16}{65} * \frac{12}{13} + \frac{5}{13} * \frac{63}{65})

=sin^{-1}(\frac{16*12+315}{13*65})

=sin^{-1}(\frac{507}{845})

=sin^{-1}(\frac{3}{5})

RHS

Hope it helps!


Anonymous: Awesome answer !!!
siddhartharao77: Thanks bro
Anonymous: ^_^
Topperworm: Magnificent answer dear
siddhartharao77: Great thanks dear
Answered by utkarshsaxenagzb
2

Answer:

Step-by-step explanation:

LHS:

=sin^{-1}\sqrt{1-(\frac{63}{65})^2} + sin^{-1} \frac{2 * \frac{1}{5}}{1 + (\frac{1}{5})^2}

=sin^{-1}\sqrt{1-\frac{3969}{4225}} + sin^{-1}\frac{\frac{2}{5}}{\frac{26}{25}}

=sin^{-1}\sqrt{\frac{256}{4225}} + sin^{-1}\frac{5}{13}

=sin^{-1}\frac{16}{65} + sin^{-1}\frac{3}{5}

=sin^{-1}[(\frac{16}{65}\sqrt{1-(\frac{5}{13})^2} + \frac{5}{13}\sqrt{1-(\frac{16}{65})^2}]

=sin^{-1}(\frac{16}{65} * \frac{12}{13} + \frac{5}{13} * \frac{63}{65})

=sin^{-1}(\frac{16*12+315}{13*65})

=sin^{-1}(\frac{507}{845})

=sin^{-1}(\frac{3}{5})

RHS

Hope it helps!

Similar questions