Math, asked by rauhanika658, 1 year ago

prove it
 \frac{sin \: 2a}{1 - cos \: 2a }  = cot \: a

Answers

Answered by Swarnimkumar22
9
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}


prove it
 \frac{sin \: 2a}{1 - cos \: 2a } = cot \: a



\bold{\underline{Answer-}}



LHS =  \frac{sin \: 2a}{1 - cos \: 2a }

 =  \frac{2sin \: a \: cos \: a}{1 - (1 - 2 {sin}^{2} a)}

[°•°cos2A = 1 - 2sin² A]

 =  \frac{2sin \: a \: cos \: a}{1 - 1 + 2 {sin}^{2}a }  \\  \\  =  \frac{2 \: sin \: a \: cos \: a}{2 {sin}^{2} a}  \\  \\  \\  =  \frac{cos \: a}{sin \: a}  = cot \: a
Similar questions