Math, asked by Ironman9329, 7 months ago

prove it.......using identities​

Attachments:

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\boxed{\fcolorbox{red}{Yellow}{Answer }}

 \:  \:   \pink\bigstar \sf{ \frac{1}{ {cos}^{2} \theta }  -  {tan }^{2} \theta  = 1 }....to \: prove

 \:  \:  \red \bigstar \tt{ \frac{1}{ {cos}^{2}  \theta}  -  {tan}^{2}  \theta}

 \:  \:  \red \bigstar \tt{ left \: hand \: side \to \:  \frac{1}{ {cos}^{2}  \theta }  -  {tan}^{2}  \theta}

 \:  \implies \displaystyle \sf{ \frac{1}{ {cos}^{2} \theta }  -  \frac{ {sin}^{2}  \theta}{ {cos}^{2}  \theta} }

 \:  \:  \implies \displaystyle \sf{ \frac{1 -  {sin}^{2} \theta }{ {cos}^{2}  \theta} }

 \:  \: \\   \implies \displaystyle \sf{ \frac{ {cos}^{2}  \theta}{ {cos}^{2}  \theta} } \:  \:  \:  \: .........use \: property \:  {sin}^{2} \theta  +  {cos}^{2} \theta=1

 \:  \:  \implies \displaystyle \sf{ \cancel \frac{ {cos}^{2 } \theta }{ {cos}^{2}  \theta} } = 1

 \:  \red \bigstar \displaystyle \sf{right \: hand \: side = 1}

 \:  \:  \clubsuit \underline{ \boxed{ \bf{lhs \:  = rhs \: hence \: proved}}}

Similar questions