Prove LHS =RHS
cot4x ( sin5x + sin3x ) = cotx ( sin5x - sin3x)
Answers
Answered by
9
ANSWER
I HOPE THIS INFO HELPS U ☺️☺️☺️
I HOPE THIS INFO HELPS U ☺️☺️☺️
Attachments:
Answered by
42
To Prove :-
- cot4x(sin5x + sin3x) = cotx(sin5x - sin3x)
Formula used :-
- sinC + sinD = 2 *sin(C+D/2) * cos(C - D/2)
- sinC - sinD = 2 *sin(C - D/2) * cos(C + D/2)
- cotA = cosA/sinA
Solution :-
Using , sinC + sinD = 2 *sin(C+D/2) * cos(C - D/2) in LHS, and, sinC - sinD = 2 *sin(C - D/2) * cos(C + D/2) in RHS , we get,
→ cot4x[2*{sin(5x+3x)/2}*{cos(5x - 3x)/2}] = cotx[2*{sin(5x - 3x)/2}*{cos(5x + 3x)/2}]
→ cot4x[ 2* sin(8x/2) * cos(2x/2)] = cotx[ 2 * sin(2x/2) * cos(8x/2) ]
→ cot4x[ 2 * sin4x * cosx] = cotx[ 2 * sinx * cos4x]
Now, using cotA = (cosA/sinA), Both sides we get,
→ (cos4x/sin4x)[2 * sin4x * cosx] = (cosx/sinx)[ 2 * sinx * cos4x]
→ cos4x * 2 * cosx = cosx * 2 * cos4x
→ 2 * cosx * cos4x = 2 * cosx * cos4x
→ LHS = RHS (Proved).
Similar questions