Math, asked by garry853, 1 year ago

Prove LHS =RHS
cot4x ( sin5x + sin3x ) = cotx ( sin5x - sin3x)

Answers

Answered by TEJ1977
9
ANSWER


I HOPE THIS INFO HELPS U ☺️☺️☺️
Attachments:
Answered by RvChaudharY50
42

To Prove :-

  • cot4x(sin5x + sin3x) = cotx(sin5x - sin3x)

Formula used :-

  • sinC + sinD = 2 *sin(C+D/2) * cos(C - D/2)
  • sinC - sinD = 2 *sin(C - D/2) * cos(C + D/2)
  • cotA = cosA/sinA

Solution :-

Using , sinC + sinD = 2 *sin(C+D/2) * cos(C - D/2) in LHS, and, sinC - sinD = 2 *sin(C - D/2) * cos(C + D/2) in RHS , we get,

cot4x[2*{sin(5x+3x)/2}*{cos(5x - 3x)/2}] = cotx[2*{sin(5x - 3x)/2}*{cos(5x + 3x)/2}]

→ cot4x[ 2* sin(8x/2) * cos(2x/2)] = cotx[ 2 * sin(2x/2) * cos(8x/2) ]

→ cot4x[ 2 * sin4x * cosx] = cotx[ 2 * sinx * cos4x]

Now, using cotA = (cosA/sinA), Both sides we get,

(cos4x/sin4x)[2 * sin4x * cosx] = (cosx/sinx)[ 2 * sinx * cos4x]

→ cos4x * 2 * cosx = cosx * 2 * cos4x

→ 2 * cosx * cos4x = 2 * cosx * cos4x

→ LHS = RHS (Proved).

Similar questions