prove mid point theorem
Answers
Answered by
1
Here, In △△ ABC, D and E are the midpoints of sides AB and AC respectively. D and E are joined.
Given: AD = DB and AE = EC.
To Prove: DE ∥∥ BC and DE = 1212 BC.
Construction: Extend line se
gment DE to F such that DE = EF.
Proof: In △△ ADE and △△ CFE
AE = EC (given)
∠∠AED = ∠∠CEF (vertically opposite angles)
DE = EF (construction)
hence
△△ ADE ≅≅ △△ CFE (by SAS)
Therefore,
∠∠ADE = ∠∠CFE (by c.p.c.t.)
∠∠DAE = ∠∠FCE (by c.p.c.t.)
and AD = CF (by c.p.c.t.)
The angles ∠∠ADE and ∠∠CFE are alternate interior angles assuming AB and CF are two lines intersected by transversal DF.
Similarly, ∠∠DAE and ∠∠FCE are alternate interior angles assuming AB and CF are two lines intersected by transversal AC.
Therefore, AB ∥∥ CF
So, BD ∥∥ CF
and BD = CF (since AD = BD and it is proved above that AD = CF)
Thus, BDFC is a parallelogram.
By the properties of parallelogram, we have
DF ∥∥ BC
and DF = BC
DE ∥∥ BC
and DE = 1212BC (DE = EF by construction)
Hence proved.
Given: AD = DB and AE = EC.
To Prove: DE ∥∥ BC and DE = 1212 BC.
Construction: Extend line se
gment DE to F such that DE = EF.
Proof: In △△ ADE and △△ CFE
AE = EC (given)
∠∠AED = ∠∠CEF (vertically opposite angles)
DE = EF (construction)
hence
△△ ADE ≅≅ △△ CFE (by SAS)
Therefore,
∠∠ADE = ∠∠CFE (by c.p.c.t.)
∠∠DAE = ∠∠FCE (by c.p.c.t.)
and AD = CF (by c.p.c.t.)
The angles ∠∠ADE and ∠∠CFE are alternate interior angles assuming AB and CF are two lines intersected by transversal DF.
Similarly, ∠∠DAE and ∠∠FCE are alternate interior angles assuming AB and CF are two lines intersected by transversal AC.
Therefore, AB ∥∥ CF
So, BD ∥∥ CF
and BD = CF (since AD = BD and it is proved above that AD = CF)
Thus, BDFC is a parallelogram.
By the properties of parallelogram, we have
DF ∥∥ BC
and DF = BC
DE ∥∥ BC
and DE = 1212BC (DE = EF by construction)
Hence proved.
Answered by
0
Mid point Theorem :
The line segment joining the mid points of any two sides of a triangle is parallel to the third side.
Given :
A \triangle ABC△ABC in which D and E are the mid points of AB and AC, respectively.
To prove :
DE \parallel BCDE∥BC.
Proof :
Since D and E are the mid points of AB and AC, respectively, we have AD=DBAD=DB and AE=ECAE=EC.
Therefore,
\dfrac{AD}{DB}=\dfrac{AE}{EC}
DB
AD
=
EC
AE
( each equal to 1 )
Therefore, by the converse of thales theorem, DE \parallel BCDE∥BC.
Attachments:
Similar questions