prove no.2
please do fast
Attachments:
nilakshi1234:
please anyone solve
Answers
Answered by
4
Hey !!!
Q. no. 1
( a)
from Rhs
tan75° - cot75°
tan75° - cot ( 90° - 15 ° )
tan75° - tan15°
sin75°/cos75° - sin15° / cos15°
sin75° × cos15 ° - cos 75°× cos15° / cos75° sin15°
APPLYING formula
sin ( A - B ) = sinA cosA - cosA sinA
and , 2sinA × cosA = sin2A
hence , sin( 75° - 15° ) / cos75° sin15°
multiplying by 2 on both denominator and numerator
=> 2sin 60° / 2 sin15° × cos75°
=> 2sin60° / sin30°
=> 2 sin60° / 1 / 2
=> 4 sin60° Prooved
___________________
(b )
from LHS
cosa + cos ( 120° + a ) + cos ( 120 ° - a )
Applying formula
cosC + cos D = 2 cos ( C + D ) / 2 × sin ( c - D )/2
=> cosa + cos ( 120° + a ) + cos ( 120° - a)
=> cosa + 2 cos { 120° + a + ( 120° - a )/2 } × cos ( 120° + a - 120 + a )/2
=> cosa + 2 cosa 120° × cosA
=> cosa + 2cos ( 90° + 30° ) × cosa
=> cosa - 2 sin30°× cosa
=> cosa - cosa
=> 0 Rhs prooved
__________________________
°•° tan ( A + B ) = tanA + tanB / 1 - tanA tanB
APPLYING this formule
c) •°•tan ( 35° + 10 ) = tan45°
tan 30° + tan10° / 1 - tan35°tan10° = 1
tan30° + tan10° = 1 - tan35° tan10°
tan30° + tan10° + tan35° tan10° = 1 Rhs prooved
________________________
( D ) tan ( 8a ) = tan(5a + 3a )
tan ( 5a + 3a ) = tan5a + tan3a/ 1 - tan5a tan3a
tan8a = tan5a + tan3a/ 1 - tan5a tan3a
tan8a - tan8a tan5a tan3a = tan5a + tan3a
tan8a -( tan5a + tan3a) = tan8a tan5a tan3a
tan8a - tan5a - tan3a = tan8a tan5a tan3a
Rhs = LHS prooved
_____________________________
Hope it will help you !!
@Rajukumar111
Q. no. 1
( a)
from Rhs
tan75° - cot75°
tan75° - cot ( 90° - 15 ° )
tan75° - tan15°
sin75°/cos75° - sin15° / cos15°
sin75° × cos15 ° - cos 75°× cos15° / cos75° sin15°
APPLYING formula
sin ( A - B ) = sinA cosA - cosA sinA
and , 2sinA × cosA = sin2A
hence , sin( 75° - 15° ) / cos75° sin15°
multiplying by 2 on both denominator and numerator
=> 2sin 60° / 2 sin15° × cos75°
=> 2sin60° / sin30°
=> 2 sin60° / 1 / 2
=> 4 sin60° Prooved
___________________
(b )
from LHS
cosa + cos ( 120° + a ) + cos ( 120 ° - a )
Applying formula
cosC + cos D = 2 cos ( C + D ) / 2 × sin ( c - D )/2
=> cosa + cos ( 120° + a ) + cos ( 120° - a)
=> cosa + 2 cos { 120° + a + ( 120° - a )/2 } × cos ( 120° + a - 120 + a )/2
=> cosa + 2 cosa 120° × cosA
=> cosa + 2cos ( 90° + 30° ) × cosa
=> cosa - 2 sin30°× cosa
=> cosa - cosa
=> 0 Rhs prooved
__________________________
°•° tan ( A + B ) = tanA + tanB / 1 - tanA tanB
APPLYING this formule
c) •°•tan ( 35° + 10 ) = tan45°
tan 30° + tan10° / 1 - tan35°tan10° = 1
tan30° + tan10° = 1 - tan35° tan10°
tan30° + tan10° + tan35° tan10° = 1 Rhs prooved
________________________
( D ) tan ( 8a ) = tan(5a + 3a )
tan ( 5a + 3a ) = tan5a + tan3a/ 1 - tan5a tan3a
tan8a = tan5a + tan3a/ 1 - tan5a tan3a
tan8a - tan8a tan5a tan3a = tan5a + tan3a
tan8a -( tan5a + tan3a) = tan8a tan5a tan3a
tan8a - tan5a - tan3a = tan8a tan5a tan3a
Rhs = LHS prooved
_____________________________
Hope it will help you !!
@Rajukumar111
Similar questions